Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Jan;47(1):135–138. doi: 10.1104/pp.47.1.135

A Lipid Requirement for Photosystem I Activity in Heptane-extracted Spinach Chloroplasts 1

J Brand a, D W Krogmann a, F L Crane a
PMCID: PMC365826  PMID: 16657568

Abstract

A lipid requirement for photosystem I activity in Spinacia oleracea chloroplasts has been characterized. The transfer of electrons from tetramethyl-p-phenylenediamine through the chloroplast photosystem to viologen dye was used as an assay of photosystem I activity. Activity is diminished by prolonged heptane extraction and is partially restored by readdition of the extracted lipid. Extracted chloroplasts require plastocyanin for maximal restoration of activity. The effect of lipid extract in restoration is partially replaced by triglycerides containing unsaturated, C18 fatty acids. Various potential redox carriers which occur naturally in chloroplasts do not substitute for extracted lipid. Galacto-lipids, sulfolipids, and phospholipids are not involved in the restoration of activity.

Full text

PDF
135

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  3. Bishop N. I. THE REACTIVITY OF A NATURALLY OCCURRING QUINONE (Q-255) IN PHOTOCHEMICAL REACTIONS OF ISOLATED CHLOROPLASTS. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1696–1702. doi: 10.1073/pnas.45.12.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crane F. L. Isolation of Two Quinones with Coenzyme Q Activity from Alfalfa. Plant Physiol. 1959 Sep;34(5):546–551. doi: 10.1104/pp.34.5.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Henninger M. D., Crane F. L. Electron transport in chloroplasts. 3. The role of plastoquinone C. J Biol Chem. 1967 Mar 25;242(6):1155–1159. [PubMed] [Google Scholar]
  6. Izawa S., Connolly T. N., Winget G. D., Good N. E. Inhibition and uncoupling of photophosphorylation in chloroplasts. Brookhaven Symp Biol. 1966;19:169–187. [PubMed] [Google Scholar]
  7. JAGENDORF A. T., AVRON M. Cofactors and rates of photosynthetic phosphorylation by spinach chloroplasts. J Biol Chem. 1958 Mar;231(1):277–290. [PubMed] [Google Scholar]
  8. LYNCH V. H., FRENCH C. S. Beta-carotene, an active component of chloroplasts. Arch Biochem Biophys. 1957 Aug;70(2):382–391. doi: 10.1016/0003-9861(57)90125-x. [DOI] [PubMed] [Google Scholar]
  9. O'Brien J. S., Benson A. A. Isolation and fatty acid composition of the plant sulfolipid and galactolipids. J Lipid Res. 1964 Jul;5(3):432–434. [PubMed] [Google Scholar]
  10. Roughan P. G., Batt R. D. Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal Biochem. 1968 Jan;22(1):74–88. doi: 10.1016/0003-2697(68)90261-3. [DOI] [PubMed] [Google Scholar]
  11. böger P., Black C. C., San Pietro A. Photosynthetic reactions with pyridine nucleotide analogs. II. 3-Pyridinealdehyde-diphosphopyridine nucleotide and 3-pyridinealdehyde-deamino-diphosphopyridine nucleotide. Arch Biochem Biophys. 1966 Jul;115(1):35–43. doi: 10.1016/s0003-9861(66)81034-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES