Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Feb;47(2):196–198. doi: 10.1104/pp.47.2.196

Developmental Changes in Ribosomal Ribonucleic Acid and Fraction I Protein in Wheat Leaves

B D Patterson a, Robert M Smillie a
PMCID: PMC365840  PMID: 16657594

Abstract

In light-grown wheat (Triticum aestivum L.) seedlings, the amount of chloroplast and cytoplasmic ribosomal RNA increased to a maximum in the first leaf near the end of its growth and declined by about 60% in the following 3 days. While total ribosomal RNA was declining, labeled uracil was still incorporated into cytoplasmic ribosomal RNA, but the rate of incorporation into chloroplast ribosomal RNA fell by more than 80%, as did the incorporation of labeled leucine into fraction I protein. Either there is greater replacement of cytoplasmic ribosomal RNA than chloroplast ribosomal RNA in mature leaves, or chloroplasts are able to repress the incorporation of exogenous precursor when there is no net synthesis of RNA.

Full text

PDF
196

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akroyd P. Acrylamide gel slab electrophoresis in a simple glass cell for improved resolution and comparison of serum proteins. Anal Biochem. 1967 Jun;19(3):399–410. doi: 10.1016/0003-2697(67)90229-1. [DOI] [PubMed] [Google Scholar]
  2. Bamji M. S., Jagendorf A. T. Amino Acid incorporation by wheat chloroplasts. Plant Physiol. 1966 May;41(5):764–770. doi: 10.1104/pp.41.5.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berlin R. D., Stadtman E. R. A possible role of purine nucleotide pyrophosphorylases in the regulation of purine uptake by Bacillus subtilis. J Biol Chem. 1966 Jun 10;241(11):2679–2686. [PubMed] [Google Scholar]
  4. CLARK M. F., MATTHEWS R. E., RALPH R. K. RIBOSOMES AND POLYRIBOSOMES IN BRASSICA PEKINENSIS. Biochim Biophys Acta. 1964 Oct 16;91:289–304. doi: 10.1016/0926-6550(64)90253-1. [DOI] [PubMed] [Google Scholar]
  5. Ingle J. Synthesis and Stability of Chloroplast Ribosomal-RNA's. Plant Physiol. 1968 Sep;43(9):1448–1454. doi: 10.1104/pp.43.9.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LYTTLETON J. W. Isolation of ribosomes from spinach chloroplasts. Exp Cell Res. 1962 Mar;26:312–317. doi: 10.1016/0014-4827(62)90183-0. [DOI] [PubMed] [Google Scholar]
  7. Loening U. E., Ingle J. Diversity of RNA components in green plant tissues. Nature. 1967 Jul 22;215(5099):363–367. doi: 10.1038/215363a0. [DOI] [PubMed] [Google Scholar]
  8. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. McCarthy B. J., Britten R. J. The Synthesis of Ribosomes in E. coli: I. The Incorporation of C-Uracil into the Metabolic Pool and RNA. Biophys J. 1962 Jan;2(1):35–47. doi: 10.1016/s0006-3495(62)86839-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Moss B., Ingram V. M. The repression and induction by thyroxin of hemoglobin synthesis during amphibian metamorphosis. Proc Natl Acad Sci U S A. 1965 Sep;54(3):967–974. doi: 10.1073/pnas.54.3.967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Nierlich D. P. Amino acid control over RNA synthesis: a re-evaluation. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1345–1352. doi: 10.1073/pnas.60.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Nierlich D. P. Radioisotope uptake as a measure of synthesis of messenger RNA. Science. 1967 Dec 1;158(3805):1186–1188. doi: 10.1126/science.158.3805.1186. [DOI] [PubMed] [Google Scholar]
  13. PATTERSON M. S., GREENE R. C. MEASUREMENT OF LOW ENERGY BETA-EMITTERS IN AQUEOUS SOLUTION BY LIQUID SCINTILLATION COUNTING OF EMULSIONS. Anal Chem. 1965 Jun;37:854–857. doi: 10.1021/ac60226a017. [DOI] [PubMed] [Google Scholar]
  14. Patterson B. D., Davies D. D. Specificity of the enzymatic methylation of pea histone. Biochem Biophys Res Commun. 1969 Mar 31;34(6):791–794. doi: 10.1016/0006-291x(69)90249-6. [DOI] [PubMed] [Google Scholar]
  15. Peacock A. C., Dingman C. W. Resolution of multiple ribonucleic acid species by polyacrylamide gel electrophoresis. Biochemistry. 1967 Jun;6(6):1818–1827. doi: 10.1021/bi00858a033. [DOI] [PubMed] [Google Scholar]
  16. RALPH R. K., BELLAMY A. R. ISOLATION AND PURIFICATION OF UNDEGRADED RIBONUCLEIC ACIDS. Biochim Biophys Acta. 1964 May 18;87:9–16. doi: 10.1016/0926-6550(64)90041-6. [DOI] [PubMed] [Google Scholar]
  17. Ranalletti M., Gnanam A., Jagendorf A. T. Amino acid incorporation by isolated chloroplasts. Biochim Biophys Acta. 1969 Jul 22;186(1):192–204. doi: 10.1016/0005-2787(69)90502-4. [DOI] [PubMed] [Google Scholar]
  18. Sagan L. On the origin of mitosing cells. J Theor Biol. 1967 Mar;14(3):255–274. doi: 10.1016/0022-5193(67)90079-3. [DOI] [PubMed] [Google Scholar]
  19. Smillie R. M., Graham D., Dwyer M. R., Grieve A., Tobin N. F. Evidence for the synthesis in vivo of proteins of the Calvin cycle and of the photosynthetic electron-transfer pathway on chloroplast ribosomes. Biochem Biophys Res Commun. 1967 Aug 23;28(4):604–610. doi: 10.1016/0006-291x(67)90356-7. [DOI] [PubMed] [Google Scholar]
  20. Spencer D., Whitfeld P. R. Ribonucleic acid synthesizing activity of spinach chloroplasts and nuclei. Arch Biochem Biophys. 1967 Aug;121(2):336–345. doi: 10.1016/0003-9861(67)90085-9. [DOI] [PubMed] [Google Scholar]
  21. Stanley W. M., Jr, Bock R. M. Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry. 1965 Jul;4(7):1302–1311. doi: 10.1021/bi00883a014. [DOI] [PubMed] [Google Scholar]
  22. TROWN P. W. AN IMPROVED METHOD FOR THE ISOLATION OF CARBOXYDISMUTASE. PROBABLE IDENTITY WITH FRACTION I PROTEIN AND THE PROTEIN MOIETY OF PROTOCHLOROPHYLL HOLOCHROME. Biochemistry. 1965 May;4:908–918. doi: 10.1021/bi00881a018. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES