Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1971 Mar;47(3):342–345. doi: 10.1104/pp.47.3.342

Electrophoretic Analysis of Histones from Gibberellic Acid-treated Dwarf Peas

Steven Spiker a,1, Roger Chalkley b
PMCID: PMC365866  PMID: 16657619

Abstract

Histones from the epicotyls of light-grown dwarf peas (Pisum sativum L. cv. Little Marvel) which had been treated with gibberellic acid were compared to histones from control dwarf peas by the method of polyacrylamide gel electrophoresis. The histone complements were found to be unaltered in the electrophoretic mobility and relative quantity of the individual fractions. The ratio of histone to DNA was also unaffected by treatment with gibberellic acid. The investigation confirmed earlier reports that over 95% of the histone of peas is contained in seven molecular species and that one of these can exist both as an oxidized disulfide dimer and as a reduced monomer. Evidence is presented which indicates that only the monomer form exists in vivo in the pea epicotyl tissue and that the oxidized dimer is an artifact of extraction. The implications of the data concerning the mechanism of action of gibberellic acid are discussed.

Full text

PDF
342

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLFREY V. G., FAULKNER R., MIRSKY A. E. ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. Proc Natl Acad Sci U S A. 1964 May;51:786–794. doi: 10.1073/pnas.51.5.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bonner J., Dahmus M. E., Fambrough D., Huang R. C., Marushige K., Tuan D. Y. The Biology of Isolated Chromatin: Chromosomes, biologically active in the test tube, provide a powerful tool for the study of gene action. Science. 1968 Jan 5;159(3810):47–56. doi: 10.1126/science.159.3810.47. [DOI] [PubMed] [Google Scholar]
  3. Broughton W. J. Influence of gibberellic acid on nucleic acid synthesis in dwarf pea internodes. Biochim Biophys Acta. 1968 Jan 29;155(1):308–310. doi: 10.1016/0005-2787(68)90364-x. [DOI] [PubMed] [Google Scholar]
  4. Chalkley R., Jensen R. H. A study of the structure of isolated chromatin. Biochemistry. 1968 Dec;7(12):4380–4388. doi: 10.1021/bi00852a034. [DOI] [PubMed] [Google Scholar]
  5. Chrispeels M. J., Varner J. E. Hormonal control of enzyme synthesis: on the mode of action of gibberellic Acid and abscisin in aleurone layers of barley. Plant Physiol. 1967 Jul;42(7):1008–1016. doi: 10.1104/pp.42.7.1008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeLange R. J., Fambrough D. M., Smith E. L., Bonner J. Calf and pea histone IV. 3. Complete amino acid sequence of pea seedling histone IV; comparison with the homologous calf thymus histone. J Biol Chem. 1969 Oct 25;244(20):5669–5679. [PubMed] [Google Scholar]
  7. Fambrough D. M., Bonner J. On the similarity of plant and animal histones. Biochemistry. 1966 Aug;5(8):2563–2570. doi: 10.1021/bi00872a012. [DOI] [PubMed] [Google Scholar]
  8. Fambrough D. M., Bonner J. Sequence homology and role of cysteine in plant and animal arginine-rich histones. J Biol Chem. 1968 Sep 10;243(17):4434–4439. [PubMed] [Google Scholar]
  9. Farmbrough D. M., Fujimura F., Bonner J. Quantitative distribution of histone components in the pea plant. Biochemistry. 1968 Feb;7(2):575–585. doi: 10.1021/bi00842a010. [DOI] [PubMed] [Google Scholar]
  10. Filner P., Varner J. E. A test for de novo synthesis of enzymes: density labeling with H2O18 of barley alpha-amylase induced by gibberellic acid. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1520–1526. doi: 10.1073/pnas.58.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gutierrez R. M., Hnilica L. S. Tissue specificity of histone phosphorylation. Science. 1967 Sep 15;157(3794):1324–1325. doi: 10.1126/science.157.3794.1324. [DOI] [PubMed] [Google Scholar]
  12. HUANG R. C., BONNER J. Histone, a suppressor of chromosomal RNA synthesis. Proc Natl Acad Sci U S A. 1962 Jul 15;48:1216–1222. doi: 10.1073/pnas.48.7.1216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Johri M. M., Varner J. E. Enhancement of RNA synthesis in isolated pea nuclei by gibberellic acid. Proc Natl Acad Sci U S A. 1968 Jan;59(1):269–276. doi: 10.1073/pnas.59.1.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaufman P. B., Ghosheh N., Ikuma H. Promotion of growth and invertase activity by gibberellic Acid in developing Avena internodes. Plant Physiol. 1968 Jan;43(1):29–34. doi: 10.1104/pp.43.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lang A., Nitsan J. Relations among cell growth, DNA synthesis, and gibberellin action. Ann N Y Acad Sci. 1967 Aug 9;144(1):180–190. doi: 10.1111/j.1749-6632.1967.tb34012.x. [DOI] [PubMed] [Google Scholar]
  17. Marushige K., Bonner J. Template properties of liver chromatin. J Mol Biol. 1966 Jan;15(1):160–174. doi: 10.1016/s0022-2836(66)80218-8. [DOI] [PubMed] [Google Scholar]
  18. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  19. Panyim S., Chalkley R., Spiker S., Oliver D. Constant electrophoretic mobility of the cysteine-containing histone in plants and animals. Biochim Biophys Acta. 1970 Jul 27;214(1):216–221. doi: 10.1016/0005-2795(70)90086-3. [DOI] [PubMed] [Google Scholar]
  20. Panyim S., Chalkley R. The heterogeneity of histones. I. A quantitative analysis of calf histones in very long polyacrylamide gels. Biochemistry. 1969 Oct;8(10):3972–3979. doi: 10.1021/bi00838a013. [DOI] [PubMed] [Google Scholar]
  21. Panyim S., Jensen R. H., Chalkley R. Proteolytic contamination of calf thymus nucleohistone and its inhibition. Biochim Biophys Acta. 1968 Jun 26;160(2):252–255. doi: 10.1016/0005-2795(68)90095-0. [DOI] [PubMed] [Google Scholar]
  22. Tuan D. Y., Bonner J. Dormancy Associated with Repression of Genetic Activity. Plant Physiol. 1964 Sep;39(5):768–772. doi: 10.1104/pp.39.5.768. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES