Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Mar;49(3):381–384. doi: 10.1104/pp.49.3.381

Studies on Effect of Certain Quinones

I. Electron Transport, Photophosphorylation, and CO2 Fixation in Isolated Chloroplasts 1

H C Sikka a, R H Shimabukuro a,2, G Zweig a
PMCID: PMC365969  PMID: 16657965

Abstract

The effect of quinone herbicides and fungicides on photosynthetic reactions in isolated spinach (Spinacia oleracea) chloroplasts was investigated. 2,3-Dichloro-1,4-naphthoquinone (dichlone), 2-amino-3-chloro-1,4-naphthoquinone (06K-quinone), and 2,3,5,6-tetrachloro-1,4-benzoquinone (chloranil) inhibited ferricyanide reduction as well as ATP formation. Benzoquinone had little or no effect on these reactions. The two reactions showed a differential sensitivity to these inhibitors. Dichlone was a strong inhibitor of both photosystems I and II; photosystem I was more sensitive to 06K-quinone than was photosystem II, whereas the reverse was true of chloranil. Chloranil and 06K-quinone inhibited ferricyanide reduction and the coupled photophosphorylation to the same extent, whereas dichlone affected photophosphorylation to a greater extent than the ferricyanide reduction.

CO2 fixation was inhibited by all the quinones to varying degrees. In chloroplasts treated with 06K-quinone or benzoquinone, CO2 fixation was inhibited to a greater extent than the photoreduction of ferricyanide or ATP formation, indicating the possibility that the two quinones may also inhibit certain reactions in the carbon reduction cycle. The effect of dichlone and chloranil, but not of 06K-quinone, was overcome by the addition of reduced glutathione. The quinones caused an increase in the proportion of 14C incorporated into 3-phosphoglyceric acid and a reduction in the amount of glycolic acid.

Full text

PDF
381

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AVRON M. Photophosphorylation by swiss-chard chloroplasts. Biochim Biophys Acta. 1960 May 20;40:257–272. doi: 10.1016/0006-3002(60)91350-0. [DOI] [PubMed] [Google Scholar]
  2. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Avron M., Shavit N. Inhibitors and uncouplers of photophosphorylation. Biochim Biophys Acta. 1965 Nov 29;109(2):317–331. doi: 10.1016/0926-6585(65)90160-3. [DOI] [PubMed] [Google Scholar]
  4. Bamberger E. S., Gibbs M. Effect of Phosphorylated Compounds and Inhibitors on CO(2) Fixation by Intact Spinach Chloroplasts. Plant Physiol. 1965 Sep;40(5):919–926. doi: 10.1104/pp.40.5.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cho D. H., Parks L., Zweig G. Photoreduction of quinones by isolated spinach chloroplasts. Biochim Biophys Acta. 1966 Oct 10;126(2):200–206. doi: 10.1016/0926-6585(66)90055-0. [DOI] [PubMed] [Google Scholar]
  6. Ellyard P. W., Gibbs M. Inhibition of photosynthesis by oxygen in isolated spinach chloroplasts. Plant Physiol. 1969 Aug;44(8):1115–1121. doi: 10.1104/pp.44.8.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Plaut Z., Gibbs M. Glycolate formation in intact spinach chloroplasts. Plant Physiol. 1970 Apr;45(4):470–474. doi: 10.1104/pp.45.4.470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. TREBST A. V., LOSADA M., ARNON D. I. Photosynthesis by isolated chloroplasts. XII. Inhibitors of carbon dioxide assimilation in a reconstituted chloroplast system. J Biol Chem. 1960 Mar;235:840–844. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES