Abstract
Light-induced structural changes of chloroplasts and their lamellae were studied in leaves of Pisum sativum L., cv. Blue Bantam, using electron microscopy. Upon illumination of 14-day-old plants with 2000 lux, the chloroplasts decreased in thickness by about 23% with an accompanying increase in electron scattering by the stroma. Concomitantly, the average thickness of granal lamellae (thylakoids) decreased from 195 ± 4 angstroms in the dark to 152 ± 4 angstroms in the light, and this change was half-saturated at only 50 lux. Lamellar flattening at 50 lux and its reversal in the dark both had half-times of a minute or less. The thickness of a partition (a pair of apposed lamellar membranes) was 140 ± 9 angstroms in both the light and the dark, indicating that the observed light-induced change was in the volume enclosed within the thylakoid. The effect of illumination could be inhibited by various uncouplers of photophosphorylation but not by 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea, suggesting that it depended on ATP (or its precursor). In the presence of 0.5 micromolar nigericin, the thickness of the granal lamellae increased in the light to 213 ± 3 angstroms; this may reflect an uptake of K+ into an osmotically responding space within the thylakoids.
During development, the capacity of the chloroplasts to flatten upon illumination increased in parallel with the amount of chlorophyll per gram of leaf and the number of lamellae per chloroplast. In contrast, the capacity of the leaves to fix CO2 lagged nearly 2 days behind the development of chlorophyll. CO2 fixation developed in parallel with the stacking of the lamellae into grana, supporting the contention that such organization is related to the linkage of photosystem II to photosystem I.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodchild D. J., Park R. B. Further evidence for stroma lamellae as a source of photosystem I fractions from spinach chloroplasts. Biochim Biophys Acta. 1971 Mar 2;226(2):393–399. doi: 10.1016/0005-2728(71)90106-x. [DOI] [PubMed] [Google Scholar]
- Heber U. Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim Biophys Acta. 1969 Jun 24;180(2):302–319. doi: 10.1016/0005-2728(69)90116-9. [DOI] [PubMed] [Google Scholar]
- Homann P. H., Schmid G. H. Photosynthetic reactions of chloroplasts with unusual structures. Plant Physiol. 1967 Nov;42(11):1619–1632. doi: 10.1104/pp.42.11.1619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- IZAWA S., ITOH M., SHIBATA K. ACTION SPECTRUM FOR THE SHRINKAGE OF CHLOROPLASTS. Biochim Biophys Acta. 1963 Nov 29;75:349–354. doi: 10.1016/0006-3002(63)90622-x. [DOI] [PubMed] [Google Scholar]
- KUSHIDA H., ITOH M., IZAWA S., SHIBATA K. DEFORMATIONS OF CHLOROPLASTS ON ILLUMINATION IN INTACT SPINACH LEAVES. Biochim Biophys Acta. 1964 Jan 27;79:201–203. doi: 10.1016/0926-6577(64)90051-8. [DOI] [PubMed] [Google Scholar]
- Lin D. C., Novel P. S. Control of photosynthesis by Mg 2+ . Arch Biochem Biophys. 1971 Aug;145(2):622–632. doi: 10.1016/s0003-9861(71)80022-x. [DOI] [PubMed] [Google Scholar]
- MOLLENHAUER H. H. PLASTIC EMBEDDING MIXTURES FOR USE IN ELECTRON MICROSCOPY. Stain Technol. 1964 Mar;39:111–114. [PubMed] [Google Scholar]
- Mayne B. C. Spectral, Physical, and Electron Transport Activities in the Photosynthetic Apparatus of Mesophyll Cells and Bundle Sheath Cells of Digitaria sanguinalis (L.) Scop. Plant Physiol. 1971 May;47(5):600–605. doi: 10.1104/pp.47.5.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami S., Packer L. Light-induced changes in the conformation and configuration of the thylakoid membrane of Ulva and Porphyra chloroplasts in vivo. Plant Physiol. 1970 Mar;45(3):289–299. doi: 10.1104/pp.45.3.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murakami S., Packer L. Reversible changes in the conformation of thylakoid membranes accompanying chloroplast contraction or expansion. Biochim Biophys Acta. 1969 Jun 24;180(2):420–423. doi: 10.1016/0005-2728(69)90128-5. [DOI] [PubMed] [Google Scholar]
- Nobel P. S., Chang D. T., Wang C. T., Smith S. S., Barcus D. E. Initial ATP Formation, NADP Reduction, CO(2) Fixation, and Chloroplast Flattening Upon Illuminating Pea Leaves. Plant Physiol. 1969 May;44(5):655–661. doi: 10.1104/pp.44.5.655. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobel P. S. Chloroplast shrinkage and increased photophosphorylation in vitro upon illuminating intact plants of Pisum sativum. Biochim Biophys Acta. 1968 Jan 15;153(1):170–182. doi: 10.1016/0005-2728(68)90157-6. [DOI] [PubMed] [Google Scholar]
- Nobel P. S. Light-Induced Chloroplast Shrinkage in vivo Detectable After Rapid Isolation of Chloroplasts From Pisum sativum. Plant Physiol. 1968 May;43(5):781–787. doi: 10.1104/pp.43.5.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nobel P. S. Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta. 1969 Jan 14;172(1):134–143. doi: 10.1016/0005-2728(69)90098-x. [DOI] [PubMed] [Google Scholar]
- Packer L., Barnard A. C., Deamer D. W. Ultrastructural and Photometric Evidence for Light-Induced Changes in Chloroplast Structure in vivo. Plant Physiol. 1967 Feb;42(2):283–293. doi: 10.1104/pp.42.2.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Packer L. Effect of nigericin upon light-dependent monovalent cation transport in chloroplasts. Biochem Biophys Res Commun. 1967 Sep 27;28(6):1022–1027. doi: 10.1016/0006-291x(67)90084-8. [DOI] [PubMed] [Google Scholar]
- Papageorgiou G., Govindjee Light-induced changes in the fluorescence yield of chlorophyll a in vivo. I. Anacystis nidulans. Biophys J. 1968 Nov;8(11):1299–1315. doi: 10.1016/S0006-3495(68)86557-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papageorgiou G., Govindjee Light-induced changes in the fluorescence yield of chlorophyll a in vivo. II. Chlorella pyrenoidosa. Biophys J. 1968 Nov;8(11):1316–1328. doi: 10.1016/S0006-3495(68)86558-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sane P. V., Goodchild D. J., Park R. B. Characterization of chloroplast photosystems 1 and 2 separated by a non-detergent method. Biochim Biophys Acta. 1970 Aug 4;216(1):162–178. doi: 10.1016/0005-2728(70)90168-4. [DOI] [PubMed] [Google Scholar]
- Shavit N., Degani H., San Pietro A. II. Effect of ionophorous antibiotics in chlorplasts. Biochim Biophys Acta. 1970 Aug 4;216(1):208–219. doi: 10.1016/0005-2728(70)90172-6. [DOI] [PubMed] [Google Scholar]
- Shavit N., Dilley R. A., San Pietro A. Ion translocation in isolated chloroplasts. Uncoupling of photophosphorylation and translocation of K+ and H+ ions induced by Nigericin. Biochemistry. 1968 Jun;7(6):2356–2363. doi: 10.1021/bi00846a043. [DOI] [PubMed] [Google Scholar]
- Smillie R. M., Andersen K. S., Bishop D. G. Plastocyanin-dependent photoreduction of NADP by agranal chloroplasts from maize. FEBS Lett. 1971 Apr 2;13(6):318–320. doi: 10.1016/0014-5793(71)80250-8. [DOI] [PubMed] [Google Scholar]
- Sundquist J. E., Burris R. H. Light-dependent structural changes in the lamellar membranes of isolated spinach chloroplasts: measurement by electron microscopy. Biochim Biophys Acta. 1970 Nov 3;223(1):115–121. doi: 10.1016/0005-2728(70)90136-2. [DOI] [PubMed] [Google Scholar]
- Vanden Driessche T. Circadian rhythms in Acetabularia: photosynthetic capacity and chloroplast shape. Exp Cell Res. 1966 Apr;42(1):18–30. doi: 10.1016/0014-4827(66)90315-6. [DOI] [PubMed] [Google Scholar]