Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Apr;49(4):555–559. doi: 10.1104/pp.49.4.555

The Relationship of the Peroxidative Indoleacetic Acid Oxidase System to in Vivo Ethylene Synthesis in Cotton 1

James L Fowler a,2, Page W Morgan a
PMCID: PMC366004  PMID: 16658000

Abstract

Since peroxidase and manganese have been implicated in both auxin destruction and ethylene production, the effect of auxins and high tissue levels of manganese on the peroxidative indoleacetic acid oxidase system and the internal level of ethylene was determined in cotton (Gossypium hirsutum L. cv. Watson GL-7). The highest level of manganese tested produced manganese toxicity symptoms, including necrotic lesions, accompanied by an increase in internal ethylene levels at about 15 days after treatment initiation. Statistically significant increases in indoleacetic acid oxidase and peroxidase activity were first observed 2 days later and were paralleled by tissue manganese levels above 7.4 milligrams per gram dry weight and internal ethylene levels of 0.77 microliters per liter air. Eight hours after application of 2,4-dichlorophenoxyacetic acid or indoleacetic acid, the internal levels of ethylene were increased to above 6.6 microliters per liter air in cotton plants, and levels of this magnitude were maintained for a 72-hour period of observation. Modification of peroxidase and indoleacetic acid oxidase activity in auxintreated plants definitely occurred well after the elevation of internal ethylene levels. While ethylene levels and indoleacetic acid oxidase activity were increased by both experimental approaches, the earlier appearance of increased ethylene indicates that the peroxidative indoleacetic acid oxidase system in cotton is not involved in ethylene synthesis or that this enzyme is not the rate-limiting factor when ethylene synthesis is increased. Ethylene, as well as auxin destruction, may be involved in some of the long term plant responses to toxic levels of manganese. The findings also suggest that auxin-induced ethylene may play a role in the elevation of peroxidase and indoleacetic acid oxidase activity eventually seen in extracts of plants treated with auxins. The data support the assumption that the enzymatic portion of the indoleacetic acid oxidase system in cotton is a peroxidase.

Full text

PDF
555

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeles F. B., Rubinstein B. Regulation of Ethylene Evolution and Leaf Abscission by Auxin. Plant Physiol. 1964 Nov;39(6):963–969. doi: 10.1104/pp.39.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beyer E. M., Morgan P. W. A method for determining the concentration of ethylene in the gas phase of vegetative plant tissues. Plant Physiol. 1970 Aug;46(2):352–354. doi: 10.1104/pp.46.2.352. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beyer E. M., Morgan P. W. Abscission: the role of ethylene modification of auxin transport. Plant Physiol. 1971 Aug;48(2):208–212. doi: 10.1104/pp.48.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burg S. P., Burg E. A. Auxin-induced ethylene formation: its relation to flowering in the pineapple. Science. 1966 May 27;152(3726):1269–1269. doi: 10.1126/science.152.3726.1269. [DOI] [PubMed] [Google Scholar]
  5. Burg S. P., Burg E. A. The interaction between auxin and ethylene and its role in plant growth. Proc Natl Acad Sci U S A. 1966 Feb;55(2):262–269. doi: 10.1073/pnas.55.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GOLDACRE P. L., GALSTON A. W., WEINTRAUB R. L. The effect of substituted phenols on the activity of the indoleacetic acid oxidase of peas. Arch Biochem Biophys. 1953 Apr;43(2):358–373. doi: 10.1016/0003-9861(53)90130-1. [DOI] [PubMed] [Google Scholar]
  7. Galston A. W., Davies P. J. Hormonal regulation in higher plants. Science. 1969 Mar 21;163(3873):1288–1297. doi: 10.1126/science.163.3873.1288. [DOI] [PubMed] [Google Scholar]
  8. KENTEN R. H., MANN P. J. G. The oxidation of certain dicarboxylic acids by peroxidase systems in presence of manganese. Biochem J. 1953 Feb;53(3):498–505. doi: 10.1042/bj0530498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. KENTEN R. H. The oxidation of indolyl-3-acetic acid by waxpod bean root sap and peroxidase systems. Biochem J. 1955 Jan;59(1):110–121. doi: 10.1042/bj0590110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kang B. G., Newcomb W., Burg S. P. Mechanism of Auxin-induced Ethylene Production. Plant Physiol. 1971 Apr;47(4):504–509. doi: 10.1104/pp.47.4.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ku H. S., Yang S. F., Pratt H. K. Enzymic evolution of ethylene from methional by a pea seedling extract. Arch Biochem Biophys. 1967 Mar 20;118(3):756–758. doi: 10.1016/0003-9861(67)90413-4. [DOI] [PubMed] [Google Scholar]
  12. Mapson L. W., Wardale D. A. Biosynthesis of ethylene. Enzymes involved in its formation from methional. Biochem J. 1968 Apr;107(3):433–442. doi: 10.1042/bj1070433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Morgan P. W., Hall W. C. Indoleacetic Acid Oxidizing Enzyme & Inhibitors from Light-Grown Cotton. Plant Physiol. 1963 Jul;38(4):365–370. doi: 10.1104/pp.38.4.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morgan P. W., Joham H. E., Amin J. V. Effect of manganese toxicity on the indoleacetic Acid oxidase system of cotton. Plant Physiol. 1966 Apr;41(4):718–724. doi: 10.1104/pp.41.4.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Morgan P. W. Stimulation of ethylene evolution and abscission in cotton by 2-chloroethanephosphonic Acid. Plant Physiol. 1969 Mar;44(3):337–341. doi: 10.1104/pp.44.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Taylor D. M., Morgan P. W., Joham H. E., Amin J. V. Influence of Substrate and Tissue Manganese on the IAA-Oxidase System in Cotton. Plant Physiol. 1968 Feb;43(2):243–247. doi: 10.1104/pp.43.2.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yang S. F. Biosynthesis of ethylene. Ethylene formation from methional by horseradish peroxidase. Arch Biochem Biophys. 1967 Nov;122(2):481–487. doi: 10.1016/0003-9861(67)90222-6. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES