Abstract
The structure and physiology of the etioplast was investigated in developing primary leaves of 3- to 9-day-old dark-grown bean (Phaseolus vulgaris L. var. Red Kidney) seedlings. Increase in total protochlorophyll(ide) content followed that of leaf fresh weight. In 3- to 4-day-old bean leaves more than 50% of the protochlorophyll(ide) is in the form of protochlorophyll(ide) 628, which is nontransformable by light. Most of the transformable pigment is protochlorophyll(ide) 635, with smaller amounts of protochlorophyll(ide) 650. During leaf development from the 3rd to the 7th day phototransformable protochlorophyll(ide) with an absorbance maximum at 650 nm accumulates faster than nontransformable protochlorophyll(ide) or protochlorophyll(ide) 635. This increase in protochlorophyll(ide) 650 is correlated with the formation and enlargement of prolamellar bodies.
The transformable protochlorophyll(ide) is converted by light directly to chlorophyll(ide) 672 in young leaves which do not yet have prolamellar bodies, and chlorophyll(ide) 672 may arise largely from the protochlorophyll(ide) 635. In older leaves the protochlorophyll(ide), largely protochlorophyll(ide) 650, is converted to chlorophyll(ide) 683, and a Shibata shift results in a change in the wavelength of absorption to 672 nm. The increase in protochlorophyll(ide) 650, the formation of prolamellar bodies, and the presence of the Shibata shift appear to be closely correlated. A model is briefly presented to provide a unified interpretation of these findings, including certain similarities between dark-grown Euglena cells and 3- to 4-day-old etiolated bean leaves.
Full text
PDF







Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Butler W. L., Briggs W. R. The relation between structure and pigments during the first stages of proplastid greening. Biochim Biophys Acta. 1966 Jan 4;112(1):45–53. doi: 10.1016/s0926-6585(96)90006-0. [DOI] [PubMed] [Google Scholar]
- Gyldenholm A. O. Macromolecular physiology of plastids V. On the nucleic acid metabolism during chloroplast development. Hereditas. 1968;59(1):142–168. doi: 10.1111/j.1601-5223.1968.tb02168.x. [DOI] [PubMed] [Google Scholar]
- Henningsen K. W., Boynton J. E. Macromolecular physiology of plastids. VII. The effect of a brief illumination on plastids of dark-grown barley leaves. J Cell Sci. 1969 Nov;5(3):757–793. doi: 10.1242/jcs.5.3.757. [DOI] [PubMed] [Google Scholar]
- Henningsen K. W. Macromolecular physiology of plastids. VI. Changes in membrane structure associated with shifts in the absorption maxima of the chlorophyllous pigments. J Cell Sci. 1970 Nov;7(3):587–621. doi: 10.1242/jcs.7.3.587. [DOI] [PubMed] [Google Scholar]
- KLEIN S., POLJAKOFF-MAYBER A. Fine structure and pigment conversion in isolated etiolated proplastids. J Biophys Biochem Cytol. 1961 Nov;11:433–440. doi: 10.1083/jcb.11.2.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kahn A., Boardman N. K., Thorne S. W. Energy transfer between protochlorophyllide molecules: evidence for multiple chromophores in the photoactive protochlorophyllide-protein complex vivo and in vitro. J Mol Biol. 1970 Feb 28;48(1):85–101. doi: 10.1016/0022-2836(70)90220-2. [DOI] [PubMed] [Google Scholar]
- Kahn A. Developmental Physiology of Bean Leaf Plastids II. Negative Contrast Electron Microscopy of Tubular Membranes in Prolamellar Bodies. Plant Physiol. 1968 Nov;43(11):1769–1780. doi: 10.1104/pp.43.11.1769. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MUEHLETHALER K., FREY-WYSSLING A. [Development and structure of proplastids]. J Biophys Biochem Cytol. 1959 Dec;6:507–512. [PMC free article] [PubMed] [Google Scholar]


