Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 May;49(5):707–715. doi: 10.1104/pp.49.5.707

Ion Transport Induced by Polycations and its Relationship to Loose Coupling of Corn Mitochondria 1

J B Hanson a
PMCID: PMC366038  PMID: 16658034

Abstract

Treatment of corn mitochondria (Zea mays L., WF9 (Tms) × M14) with polycations (protamine, pancreatic ribonuclease, or polylysine) releases acceptorless respiration if phosphate is present. Concurrently, there is extensive active swelling which is reversed when respiration is uncoupled or stopped. Mersalyl, the phosphate transport inhibitor, blocks both the release of respiration and the active swelling. Diversion of energy into phosphate transport lowers respiratory control and ADP: O ratios. This response is termed “loose coupling” in distinction to “uncoupling” in which energy is made unavailable for either transport or ATP formation. Corn mitochondria as used here are endogenously loose coupled to some extent, and show state 4 respiration linked to active transport.

The action of polycations can be partially mimicked by lowering pH of the suspending medium; both give swelling in sucrose medium and increased light absorbancy. Triton X-100, a nonionic detergent, will uncouple and accentuate active swelling, but unlike polycations it will not release state 4 respiration. Calcium ion acts something like polycation in activating phosphate transport and releasing respiration, and polycation appears to block entry of Ca2+.

It is speculated that neutralization of certain negatively charged acid groups on the membranes by polycations increases permeability to solutes and decreases coulombic repulsion of phosphate in approaching transport sites. In consequence, respiration rates and active transport rates increase.

Full text

PDF
707

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baddeley M. S., Hanson J. B. Uncoupling of energy-linked functions of corn mitochondria by linoleic Acid and monomethyldecenylsuccinic Acid. Plant Physiol. 1967 Dec;42(12):1702–1710. doi: 10.1104/pp.42.12.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brierley G. P. Energy-linked alteration of the permeability of heart mitochondria to chloride and other anions. Biochemistry. 1970 Feb 17;9(4):697–707. doi: 10.1021/bi00806a001. [DOI] [PubMed] [Google Scholar]
  3. Brierley G. P., Jurkowitz M., Scott K. M., Hwang K. M., Merola A. J. Activation of energy-linked K+ accumulation in isolated heart mitochondria by non-ionic detergents. Biochem Biophys Res Commun. 1971 Apr 2;43(1):50–57. doi: 10.1016/s0006-291x(71)80084-0. [DOI] [PubMed] [Google Scholar]
  4. Chappell J. B. Systems used for the transport of substrates into mitochondria. Br Med Bull. 1968 May;24(2):150–157. doi: 10.1093/oxfordjournals.bmb.a070618. [DOI] [PubMed] [Google Scholar]
  5. Christiansen E. N. Calcium uptake and its effect on respiration and phosphorylation in mitochondria from brown adipose tissue. Eur J Biochem. 1971 Mar 11;19(2):276–282. doi: 10.1111/j.1432-1033.1971.tb01315.x. [DOI] [PubMed] [Google Scholar]
  6. Elzam O. E., Hodges T. K. Characterization of energy-dependent ca transport in maize mitochondria. Plant Physiol. 1968 Jul;43(7):1108–1114. doi: 10.1104/pp.43.7.1108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HANSON J. B., SWANSON H. R. The role of basic proteins in the declining respiration of senescing corn scutellum. Biochem Biophys Res Commun. 1962 Nov 27;9:442–446. doi: 10.1016/0006-291x(62)90031-1. [DOI] [PubMed] [Google Scholar]
  8. HANSON J. B. The effect of ribonuclease on oxidative phosphorylation by mitochondria. J Biol Chem. 1959 May;234(5):1303–1306. [PubMed] [Google Scholar]
  9. Hackett D. P. Effects of salts on DPNH oxidase activity & structure of sweet potato mitochondria. Plant Physiol. 1961 Jul;36(4):445–452. doi: 10.1104/pp.36.4.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hanson J. B., Malhotra S. S., Stoner C. D. Action of Calcium on Corn Mitochondria. Plant Physiol. 1965 Nov;40(6):1033–1040. doi: 10.1104/pp.40.6.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanson J. B., Miller R. J. Evidence for active phosphate transport in maize mitochondria. Proc Natl Acad Sci U S A. 1967 Aug;58(2):727–734. doi: 10.1073/pnas.58.2.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hodges T. K., Hanson J. B. Calcium Accumulation by Maize Mitochondria. Plant Physiol. 1965 Jan;40(1):101–109. doi: 10.1104/pp.40.1.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Izzard S., Tedeschi H. Ion transport underlying metabolically controlled volume changes of isolated mitochondria. Proc Natl Acad Sci U S A. 1970 Oct;67(2):702–709. doi: 10.1073/pnas.67.2.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson C. L., Mauritzen C. M., Starbuck W. C., Schwartz A. Histones and mitochondrial ion transport. Biochemistry. 1967 Apr;6(4):1121–1127. doi: 10.1021/bi00856a022. [DOI] [PubMed] [Google Scholar]
  15. Johnson C. L., Oro J., Schwatz A. Basic protein induction of low amplitude energy-linked mitochondrial swelling. Arch Biochem Biophys. 1969 Apr;131(1):310–315. doi: 10.1016/0003-9861(69)90136-2. [DOI] [PubMed] [Google Scholar]
  16. Johnson C. L., Safer B., Schwartz A. The effects of histones and other polycations on cellular energetics. IV. Further studies on the stimulation of mitochondrial oxygen consumption. J Biol Chem. 1966 Oct 10;241(19):4513–4521. [PubMed] [Google Scholar]
  17. Kenefick D. G., Hanson J. B. The site of oligomycin action in corn mitochondria. Biochem Biophys Res Commun. 1966 Sep 22;24(6):899–902. doi: 10.1016/0006-291x(66)90334-2. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MACHINIST J. M., DAS M. L., CRANE F. L., JACOBS E. E. A negatively charged pore in the mitochondrial membrane as a site for cytochrome c function. Biochem Biophys Res Commun. 1962 Jan 24;6:475–478. doi: 10.1016/0006-291x(62)90378-9. [DOI] [PubMed] [Google Scholar]
  21. RIVENBARK W. L., HANSON J. B. The uncoupling of oxidative phosphorylation by basic proteins, and its reversal with potassium. Biochem Biophys Res Commun. 1962 May 4;7:318–321. doi: 10.1016/0006-291x(62)90199-7. [DOI] [PubMed] [Google Scholar]
  22. SCHWARTZ A. THE EFFECTS OF HISTONES AND OTHER POLYCATIONS ON CELLULAR ENERGETICS. I. MITOCHONDRIAL OXIDATIVE PHOSPHORYLATION. J Biol Chem. 1965 Feb;240:939–943. [PubMed] [Google Scholar]
  23. SCHWARTZ A. THE EFFECTS OF HISTONES AND OTHER POLYCATIONS ON CELLULAR ENERGETICS. II. ADENOSINE TRIPHOSPHATASE AND ADENOSINE DIPHOSPHATE-ADENOSINE TRIPHOSPHATE EXCHANGE REACTIONS OF MITOCHONDRIA. J Biol Chem. 1965 Feb;240:944–948. [PubMed] [Google Scholar]
  24. Schwartz A., Johnson C. L., Starbuck W. C. The effects of histones and other polycations on cellular energetics. 3. The swelling-contraction cycle of mitochondria. J Biol Chem. 1966 Oct 10;241(19):4505–4512. [PubMed] [Google Scholar]
  25. Truelove B., Hanson J. B. Calcium-activated phosphate uptake in contracting corn mitochondria. Plant Physiol. 1966 Jun;41(6):1004–1013. doi: 10.1104/pp.41.6.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tyler D. D. Evidence of a phosphate-transporter system in the inner membrane of isolated mitochondria. Biochem J. 1969 Mar;111(5):665–678. doi: 10.1042/bj1110665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. UTSUMI K., YAMAMOTO G. MITOCHONDRIAL SWELLING AND UNCOUPLING OF OXIDATIVE PHOSPHORYLATION BY ARGININE-RICH HISTONE EXTRACTED FROM CALF THYMUS. Biochim Biophys Acta. 1965 May 4;100:606–609. doi: 10.1016/0304-4165(65)90035-8. [DOI] [PubMed] [Google Scholar]
  28. WERKHEISER W. C., BARTLEY W. The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium. Biochem J. 1957 May;66(1):79–91. doi: 10.1042/bj0660079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilson R. H., Hanson J. B., Mollenhauer H. H. Active swelling and acetate uptake in corn mitochondria. Biochemistry. 1969 Mar;8(3):1203–1213. doi: 10.1021/bi00831a055. [DOI] [PubMed] [Google Scholar]
  30. Wiskich J. T., Bonner W. D. Preparation and Properties of Sweet Potato Mitochondria. Plant Physiol. 1963 Sep;38(5):594–604. doi: 10.1104/pp.38.5.594. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES