Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Jun;49(6):904–906. doi: 10.1104/pp.49.6.904

Regulation of Ribulose Diphosphate Formation in Vivo by Light

W Klob a, O Kandler a, W Tanner a
PMCID: PMC366076  PMID: 16658080

Abstract

Light-dependent formation of ribulose-1,5 diphosphate is completely inhibited by low concentrations of 3-(3,4-dichlorophenyl)-1,1-dimethylurea which do not severely affect cyclic photophosphorylation. Also in Scenedesmus mutant number 11, capable of cyclic photophosphorylation, cellular ribulose-1,5 diphosphate-levels do not increase upon illumination. When mutant cells are H2 adapted, however, a light-dependent formation of ribulose-1,5 diphosphate is observed in the presence of H2. From these results it has been concluded that at least part of the Calvin cycle does not operate in the dark, since a reductant is lacking which is generated in the light.

Full text

PDF
904

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassham J. A. The control of photosynthetic carbon metabolism. Science. 1971 May 7;172(3983):526–534. doi: 10.1126/science.172.3983.526. [DOI] [PubMed] [Google Scholar]
  2. Gale N. L., Beck J. V. Competitive inhibition of phosphoribulokinase by AMP. Biochem Biophys Res Commun. 1966 Sep 8;24(5):792–796. doi: 10.1016/0006-291x(66)90396-2. [DOI] [PubMed] [Google Scholar]
  3. JOHNSON E. J., PECK H. D., Jr COUPLING OF PHOSPHORYLATION AND CARBON DIOXIDE FIXATION IN EXTRACTS OF THIOBACILLUS THIOPARUS. J Bacteriol. 1965 Apr;89:1041–1050. doi: 10.1128/jb.89.4.1041-1050.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Johnson E. J. Occurrence of the adenosine monophosphate inhibition of carbon dioxide fixation in photosynthetic and chemosynthetic autotrophs. Arch Biochem Biophys. 1966 Apr;114(1):178–183. doi: 10.1016/0003-9861(66)90319-5. [DOI] [PubMed] [Google Scholar]
  5. Latzko E., von Garnier R., Gibbs M. Effect of photosynthesis, photosynthetic inhibitors and oxygen on the activity of ribulose 5-phosphate kinase. Biochem Biophys Res Commun. 1970;39(6):1140–1144. doi: 10.1016/0006-291x(70)90678-9. [DOI] [PubMed] [Google Scholar]
  6. MacElroy R. D., Johnson E. J., Johnson M. K. Control of ATP-dependent CO2 fixation in extracts of Hydrogenomonas facilis: NADH regulation of phosphoribulokinase. Arch Biochem Biophys. 1969 Apr;131(1):272–275. doi: 10.1016/0003-9861(69)90131-3. [DOI] [PubMed] [Google Scholar]
  7. Müller B., Ziegler I., Ziegler H. Lichtinduzierte, reversible Aktivtätssteigerung der NADP-abhängigen Glycerinaldehyd-3-phosphat-Dehydrogenase in Chloroplasten. Zum mechanismus der reaktion. Eur J Biochem. 1969 May 1;9(1):101–106. doi: 10.1111/j.1432-1033.1969.tb00581.x. [DOI] [PubMed] [Google Scholar]
  8. Paulsen J. M., Lane M. D. Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemistry. 1966 Jul;5(7):2350–2357. doi: 10.1021/bi00871a025. [DOI] [PubMed] [Google Scholar]
  9. Pratt L. H., Bishop N. I. Chloroplast reactions of photosynthetic mutants of Scenedesmus obliquus. Biochim Biophys Acta. 1968 Apr 2;153(3):664–674. doi: 10.1016/0005-2728(68)90193-x. [DOI] [PubMed] [Google Scholar]
  10. Rindt K. P., Ohmann E. NADH and AMP as allosteric effectors of ribulose-5-phosphate kinase in Rhodopseudomonas spheroides. Biochem Biophys Res Commun. 1969 Aug 7;36(3):357–364. doi: 10.1016/0006-291x(69)90572-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES