Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Jun;49(6):919–923. doi: 10.1104/pp.49.6.919

Carbohydrate Translocation in Sugar Beet Petioles in Relation to Petiolar Respiration and Adenosine 5′-Triphosphate 1

C L Coulson a,2, A L Christy a, D A Cataldo a,3, C A Swanson a
PMCID: PMC366080  PMID: 16658084

Abstract

Earlier studies have shown that the retarding effect of low petiolar temperatures on sucrose transport through sugar beet (Beta vulgaris L.) petioles is markedly time-dependent. Although the initial effect of chilling the petiole to near 0 C is severely inhibitory, translocation rates soon recover (usually within about 2 hours) to values at or near the control rate. In the present studies, selected metabolic parameters were measured simultaneously with translocation. No stoichiometric relationships among petiolar sucrose transport, petiolar respiration (CO2 production), and calculated petiolar ATP turnover rates were evident. It appears that the major sources of energy input energizing carbohydrate transport in sieve tubes function mainly at either loading or unloading sites and not at the level of individual sieve-tube elements.

Full text

PDF
919

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Addanki S., Sotos J. F., Rearick P. D. Rapid determination of picomole quantities of ATP with a liquid scintillation counter. Anal Biochem. 1966 Feb;14(2):261–264. doi: 10.1016/0003-2697(66)90135-7. [DOI] [PubMed] [Google Scholar]
  2. Geiger D. R., Christy A. L. Effect of sink region anoxia on translocation rate. Plant Physiol. 1971 Feb;47(2):172–174. doi: 10.1104/pp.47.2.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Geiger D. R., Saunders M. A., Cataldo D. A. Translocation and accumulation of translocate in the sugar beet petiole. Plant Physiol. 1969 Dec;44(12):1657–1665. doi: 10.1104/pp.44.12.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geiger D. R., Sovonick S. A. Temporary inhibition of translocation velocity and mass transfer rate by petiole cooling. Plant Physiol. 1970 Dec;46(6):847–849. doi: 10.1104/pp.46.6.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geiger D. R., Swanson C. A. Evaluation of Selected Parameters in a Sugar Beet Translocation System. Plant Physiol. 1965 Sep;40(5):942–947. doi: 10.1104/pp.40.5.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Geiger D. R., Swanson C. A. Sucrose Translocation in the Sugar Beet. Plant Physiol. 1965 Jul;40(4):685–690. doi: 10.1104/pp.40.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Jones P. C. The effect of temperature on ATP levels in cells of an ascitic hepatoma. J Cell Physiol. 1969 Feb;73(1):37–42. doi: 10.1002/jcp.1040730106. [DOI] [PubMed] [Google Scholar]
  8. Swanson C. A., Geiger D. R. Time course of low temperature inhibition of sucrose translocation in sugar beets. Plant Physiol. 1967 Jun;42(6):751–756. doi: 10.1104/pp.42.6.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Webb J. A. Translocation of Sugars in Cucurbita melopepo IV. Effects of Temperature Change. Plant Physiol. 1967 Jun;42(6):881–885. doi: 10.1104/pp.42.6.881. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES