Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Jun;49(6):968–971. doi: 10.1104/pp.49.6.968

High Photosynthetic Rate of a Chlorophyll Mutant of Cotton 1

C R Benedict a, K J McCree a, R J Kohel a
PMCID: PMC366089  PMID: 16658093

Abstract

In a chlorophyll mutant (virescent) and wild-type cotton (Gossypium hirsutum L.), a number of photosynthetic parameters have been measured and compared with those published for other chlorophyll mutants. (a) The photosynthetic rates at 230 w/m2 (400-700 nm) from a tungsten lamp were 36.8 mg CO2 fixed/dm2·hr (virescent) and 39.5 mg CO2 fixed/dm2·hr (wild-type). On a chlorphyll basis, the photosynthetic rates were 36.8 and 12.1 mg CO2 fixed/mg chl·hr, respectively. (b) The photosynthetic rates at 13 w/m2 (400-700 nm) from a tungsten source were 7.1 mg CO2 fixed/dm2·hr (virescent) and 7.4 mg CO2 fixed/dm2·hr (wild-type). On a chlorophyll basis, the photosynthetic rates were 6.0 and 1.4 mg CO2 fixed/mg chl·hr, respectively. (c) The chlorophyll a/b ratios of the virescent and wild-type leaves were 3.3 and 4.1 (d) The chlorophyll/carotenoid ratios for the virescent and wild-type leaves were 3.2 and 7.3, respectively. (e) The photosynthetic carbon metabolism of the chlorophyll mutant was through the reductive pentose phosphate cycle. (f) The CO2 compensation points for the virescent and wild-type plants were similar. (g) The mutant and wild-type leaves have the same quantum yield in the red part of the visible spectrum, but the virescent leaves have a lower quantum yield in the blue part of the spectrum. (h) Virescent and wild-type leaves contain similar levels on a protein basis of several reductive pentose phosphate cycle enzymes.

Full text

PDF
968

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benedict C. R., Kohel R. J. Characteristics of a virescent cotton mutant. Plant Physiol. 1968 Oct;43(10):1611–1616. doi: 10.1104/pp.43.10.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benedict C. R., Kohel R. J. Photosynthetic rate of a virescent cotton mutant lacking chloroplast grana. Plant Physiol. 1970 Apr;45(4):519–521. doi: 10.1104/pp.45.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boardman N. K., Highkin H. R. Studies on a barley mutant lacking chlorophyll b. I. Photochemical activity of isolated chloroplasts. Biochim Biophys Acta. 1966 Oct 10;126(2):189–199. doi: 10.1016/0926-6585(66)90054-9. [DOI] [PubMed] [Google Scholar]
  4. Fuller R. C., Gibbs M. Intracellular and Phylogenetic Distribution of Ribulose 1,5-Diphosphate Carboxylase and D-Glyceraldehyde-3-Phosphate Dehydrogenases. Plant Physiol. 1959 May;34(3):324–329. doi: 10.1104/pp.34.3.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldsworthy A., Day P. R. A Simple Technique for the Rapid Determination of Plant CO(2) Compensation Points. Plant Physiol. 1970 Dec;46(6):850–851. doi: 10.1104/pp.46.6.850. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Goodenough U. W., Levine R. P. Chloroplast structure and function in ac-20, a mutant strain of Chlamydomonas reinhardi. 3. Chloroplast ribosomes and membrane organization. J Cell Biol. 1970 Mar;44(3):547–562. doi: 10.1083/jcb.44.3.547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Highkin H. R., Boardman N. K., Goodchild D. J. Photosynthetic Studies on a Pea-mutant Deficient in Chlorophyll. Plant Physiol. 1969 Sep;44(9):1310–1320. doi: 10.1104/pp.44.9.1310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Keck R. W., Dilley R. A. Chloroplast composition and structure differences in a soybean mutant. Plant Physiol. 1970 Nov;46(5):692–698. doi: 10.1104/pp.46.5.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Keck R. W., Dilley R. A., Ke B. Photochemical characteristics in a soybean mutant. Plant Physiol. 1970 Nov;46(5):699–704. doi: 10.1104/pp.46.5.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Killough D T, Horlacher W R. The Inheritance of Virescent Yellow and Red Plant Colors in Cotton. Genetics. 1933 Jul;18(4):329–334. doi: 10.1093/genetics/18.4.329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Schmid G. H., Gaffron H. Light metabolism and chloroplast structure in chlorophyll-deficient tobacco mutants. J Gen Physiol. 1967 Jan;50(3):563–582. doi: 10.1085/jgp.50.3.563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schmid G. H., Gaffron H. Quantum requirement for photosynthesis in chlorophyll-deficient plants with unusual lamellar structures. J Gen Physiol. 1967 Oct 1;50(9):2131–2144. doi: 10.1085/jgp.50.9.2131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Schmid G., Gaffron H. Chloroplast structure and the photosynthetic unit. Brookhaven Symp Biol. 1966;19:380–392. [PubMed] [Google Scholar]
  14. Smith B. N., Epstein S. Two categories of c/c ratios for higher plants. Plant Physiol. 1971 Mar;47(3):380–384. doi: 10.1104/pp.47.3.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Whelan T., Sackett W. M., Benedict C. R. Carbon isotope discrimination in a plant possessing the C4 dicarboxylic acid pathway. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1205–1210. doi: 10.1016/0006-291x(70)90214-7. [DOI] [PubMed] [Google Scholar]
  16. Zelitch I., Day P. R. Variation in photorespiration. The effect of genetic differences in photorespiration on net photosynthesis in tobacco. Plant Physiol. 1968 Nov;43(11):1838–1844. doi: 10.1104/pp.43.11.1838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zelitch I. Investigation on photorespiration with a sensitive C-assay. Plant Physiol. 1968 Nov;43(11):1829–1837. doi: 10.1104/pp.43.11.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES