Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Nov;50(5):536–540. doi: 10.1104/pp.50.5.536

Content of Adenosine Phosphates and Adenylate Energy Charge in Germinating Ponderosa Pine Seeds

Te May Ching 1, Kim K Ching 1
PMCID: PMC366185  PMID: 16658212

Abstract

An average of 540 picomoles of total adenosine phosphates was found in the embryo of mature seeds of ponderosa pine (Pinus ponderosa Laws.) and 1140 picomoles in the gametophyte. Adenylate energy charges were 0.44 and 0.26, respectively. After stratification, total adenosine phosphates increased 7-fold and 6-fold in embryo and gametophyte, respectively, and energy charges rose to 0.85 and 0.75. During germination, total adenosine phosphates increased to a 20-fold peak on the 9th day in gametophytic tissue, parallel with the peak of reserve regradation and organellar synthesis, and then decreased. In embryo and seedling, total adenosine phosphates elevated 80-fold with two distinct oscillating increases of AMP and ADP. The oscillating increases occurred before the emergence of radicle and cotyledons during which the highest mitotic index prevailed in all tissues. Energy charges fluctuated between 0.65 at the rapid cell dividing stage to 0.85 at the fully differentiated stage of the seedling, while energy charges remained around 0.75 in the gametophyte. These data indicated that the content of adenosine phosphates of germinating seeds reflects growth, organogenesis, and morphogenesis, and that a compartmentalized energy metabolism must exist in dividing and growing plant cells.

Full text

PDF
536

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROWN E. G. CHANGES IN THE FREE NUCLEOTIDE PATTERN OF PEA SEEDS IN RELATION TO GERMINATION. Biochem J. 1965 May;95:509–514. doi: 10.1042/bj0950509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bashirelahi N., Dallam D. Nuclear metabolism. I. Nuclear phosphorylation. Arch Biochem Biophys. 1970 Nov;141(1):329–337. doi: 10.1016/0003-9861(70)90139-6. [DOI] [PubMed] [Google Scholar]
  3. Bomsel J. L., Pradet A. Study of adenosine 5'-mono-,di- and triphosphates in plant tissues. IV. Regulation of the level of nucleotides, in vivo, by adenylate kinase: theoretical and experimental study. Biochim Biophys Acta. 1968 Aug 20;162(2):230–242. doi: 10.1016/0005-2728(68)90105-9. [DOI] [PubMed] [Google Scholar]
  4. Chapman A. G., Fall L., Atkinson D. E. Adenylate energy charge in Escherichia coli during growth and starvation. J Bacteriol. 1971 Dec;108(3):1072–1086. doi: 10.1128/jb.108.3.1072-1086.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ching T. M. Activation of Germination in Douglas Fir Seed by Hydrogen Peroxide. Plant Physiol. 1959 Sep;34(5):557–563. doi: 10.1104/pp.34.5.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ching T. M. Compositional changes of douglas fir seeds during germination. Plant Physiol. 1966 Oct;41(8):1313–1319. doi: 10.1104/pp.41.8.1313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ching T. M. Glyoxysomes in megagamethophyte of germinating ponderosa pine seeds. Plant Physiol. 1970 Sep;46(3):475–482. doi: 10.1104/pp.46.3.475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Filner P., Varner J. E., Wray J. L. Environmental or developmental changes cause many enzyme activities of higher plants to rise or fall. Science. 1969 Jul 25;165(3891):358–367. doi: 10.1126/science.165.3891.358. [DOI] [PubMed] [Google Scholar]
  9. Hall J. R., Hodges T. K. Phosphorus metabolism of germinating oat seeds. Plant Physiol. 1966 Nov;41(9):1459–1464. doi: 10.1104/pp.41.9.1459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haunold A. Venetian turpentine as an aid in squashing and concomitant production of durable chromosome mounts. Stain Technol. 1968 May;43(3):153–156. doi: 10.3109/10520296809115059. [DOI] [PubMed] [Google Scholar]
  11. Huzyk L., Clark D. J. Nucleoside triphosphate pools in synchronous cultures of Escherichia coli. J Bacteriol. 1971 Oct;108(1):74–81. doi: 10.1128/jb.108.1.74-81.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jenner C. F. The composition of soluble nucleotides in the developing wheat grain. Plant Physiol. 1968 Jan;43(1):41–49. doi: 10.1104/pp.43.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Marcus A. Seed germination and the capacity for protein synthesis. Symp Soc Exp Biol. 1969;23:143–160. [PubMed] [Google Scholar]
  14. Plagemann P. G. Nucleotide pools of Novikoff rat hepatoma cells growing in suspension culture. II. Independent nucleotide pools for nucleic acid synthesis. J Cell Physiol. 1971 Apr;77(2):241–248. doi: 10.1002/jcp.1040770213. [DOI] [PubMed] [Google Scholar]
  15. Price C. E., Murray A. W. Purine metabolism in germinating wheat embryos. Biochem J. 1969 Nov;115(2):129–133. doi: 10.1042/bj1150129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. St John J. B. Determination of ATP in Chlorella with the luciferin-luciferase enzyme system. Anal Biochem. 1970 Oct;37(2):409–416. doi: 10.1016/0003-2697(70)90066-7. [DOI] [PubMed] [Google Scholar]
  17. Stewart J. M., Guinn G. Chilling injury and changes in adenosine triphosphate of cotton seedlings. Plant Physiol. 1969 Apr;44(4):605–608. doi: 10.1104/pp.44.4.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Vold B. S., Sypherd P. S. Changes in soluble RNA and ribonuclease activity during germination of wheat. Plant Physiol. 1968 Aug;43(8):1221–1226. doi: 10.1104/pp.43.8.1221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Werner R. Nature of DNA precursors. Nat New Biol. 1971 Sep 22;233(38):99–103. doi: 10.1038/newbio233099a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES