Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Nov;50(5):576–580. doi: 10.1104/pp.50.5.576

An Explanation for the Difference in Photosynthetic Capabilities of Healthy and Beet Yellows Virus-infected Sugar Beets (Beta vulgaris L.) 1

A E Hall a,2, R S Loomis a
PMCID: PMC366193  PMID: 16658220

Abstract

Sugar beets (Beta vulgaris L.) infected with the Beet Yellows Virus exhibit lower rates of net photosynthesis at light saturation than do healthy plants. These Pn reductions were correlated with increases in leaf resistance to water vapor loss. Theoretical analyses demonstrated that, although the leaf resistance to water vapor loss increases could account for a major part of the net photosynthesis decreases, some other aspect of leaf functioning also was debilitated by infection. Both the levels and the activities of ribulose-1, 5-diP carboxylase were less on a leaf area basis in extracts from infected leaves than from healthy ones. Soluble carbohydrates accumulate in Beet Yellows Virus-infected leaves, but inhibiting translocation in several ways provided no evidence in support of the hypothesis that the accumulation of photosynthates in leaves has a direct, short term, feed-back effect upon the photosynthetic rate.

Full text

PDF
576

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Coulson C. L., Christy A. L., Cataldo D. A., Swanson C. A. Carbohydrate translocation in sugar beet petioles in relation to petiolar respiration and adenosine 5'-triphosphate. Plant Physiol. 1972 Jun;49(6):919–923. doi: 10.1104/pp.49.6.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Geiger D. R. Effect of sink region cooling on translocation of photosynthate. Plant Physiol. 1966 Dec;41(10):1667–1672. doi: 10.1104/pp.41.10.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Huffaker R. C., Obendorf R. L., Keller C. J., Kleinkopf G. E. Effects of Light Intensity on Photosynthetic Carboxylative Phase Enzymes and Chlorophyll Synthesis in Greening Leaves of Hordeum vulgare L. Plant Physiol. 1966 Jun;41(6):913–918. doi: 10.1104/pp.41.6.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Kleinkopf G. E., Huffaker R. C., Matheson A. A simplified purification and some properties of ribulose 1,5-diphosphate carboxylase from barley. Plant Physiol. 1970 Aug;46(2):204–207. doi: 10.1104/pp.46.2.204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kleinkopf G. E., Huffaker R. C., Matheson A. Light-induced de Novo Synthesis of Ribulose 1,5-Diphosphate Carboxylase in Greening Leaves of Barley. Plant Physiol. 1970 Sep;46(3):416–418. doi: 10.1104/pp.46.3.416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. SAMPSON J. A method of replicating dry or moist surfaces for examination by light microscopy. Nature. 1961 Aug 26;191:932–933. doi: 10.1038/191932a0. [DOI] [PubMed] [Google Scholar]
  8. Swanson C. A., Geiger D. R. Time course of low temperature inhibition of sucrose translocation in sugar beets. Plant Physiol. 1967 Jun;42(6):751–756. doi: 10.1104/pp.42.6.751. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES