Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Nov;50(5):603–607. doi: 10.1104/pp.50.5.603

Chloride Accumulation by Mung Bean Root Tips

A Low Affinity Active Transport System at the Plasmalemma 1

Donald F Gerson a,2, Ronald J Poole a
PMCID: PMC366199  PMID: 16658226

Abstract

Net uptake of Cl into root tips of mung bean (Phaseolus aureus) increases steadily with increasing external concentrations from 1 to 60 mm. Membrane potentials were measured to determine the equilibrium concentration of Cl in the tissue which could be due to diffusion. This concentration was readily exceeded in both the relatively nonvacuolate tips (0 to 1 mm) and the vacuolate, mature upper sectons (1 to 11 mm) of the roots. The activity coefficient of both cytoplasmic and vacuolar Cl, measured with Cl sensitive microelectrodes, was approximately the same as that of a pure KCl solution of the same concentration. It is concluded that the “second mechanism” of ion uptake involves a large increase in the rate of active transport at the plasmalemma as the external concentration is increased above 1 mm.

Full text

PDF
603

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barber J. Measurement of the membrane potential and evidence for active transport of ions in Chlorella pyrenoidosa. Biochim Biophys Acta. 1968 Jun 11;150(4):618–625. doi: 10.1016/0005-2736(68)90051-5. [DOI] [PubMed] [Google Scholar]
  2. Brown A. M., Sutton R. B., Walker J. L., Jr Increased chloride conductance as the proximate cause of hydrogen ion concentration effects in Aplysia neurons. J Gen Physiol. 1970 Nov;56(5):559–582. doi: 10.1085/jgp.56.5.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CHAYES F. DETERMINATION OF RELATIVE VOLUME BY SECTIONAL ANALYSIS. Lab Invest. 1965 Jun;14:987–995. [PubMed] [Google Scholar]
  4. Cram W. J. Compartmentation and exchange of chloride in carrot root tissue. Biochim Biophys Acta. 1968 Nov 5;163(3):339–353. doi: 10.1016/0005-2736(68)90119-3. [DOI] [PubMed] [Google Scholar]
  5. Cram W. J. Short term influx as a measure of influx across the plasmalemma. Plant Physiol. 1969 Jul;44(7):1013–1015. doi: 10.1104/pp.44.7.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Elzam O. E., Rains D. W., Epstein E. Ion transport kinetics in plant tissue: complexity of the chloride absorption isotherm. Biochem Biophys Res Commun. 1964 Mar 26;15(3):273–276. doi: 10.1016/0006-291x(64)90159-7. [DOI] [PubMed] [Google Scholar]
  7. Epstein E., Rains D. W. CARRIER-MEDIATED CATION TRANSPORT IN BARLEY ROOTS: KINETIC EVIDENCE FOR A SPECTRUM OF ACTIVE SITES. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1320–1324. doi: 10.1073/pnas.53.6.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Epstein E., Rains D. W., Elzam O. E. RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Proc Natl Acad Sci U S A. 1963 May;49(5):684–692. doi: 10.1073/pnas.49.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Etherton B. Relationship of Cell Transmembrane Electropotential to Potassium and Sodium Accumulation Ratios in Oat and Pea Seedlings. Plant Physiol. 1963 Sep;38(5):581–585. doi: 10.1104/pp.38.5.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Etherton B. Steady State Sodium and Rubidium Effluxes in Pisum sativum Roots. Plant Physiol. 1967 May;42(5):685–690. doi: 10.1104/pp.42.5.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fisher J., Hodges T. K. Monovalent ion stimulated adenosine triphosphatase from oat roots. Plant Physiol. 1969 Mar;44(3):385–395. doi: 10.1104/pp.44.3.385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Laties G. G., Macdonald I. R., Dainty J. Influence of the Counter-ion on the Absorption Isotherm for Chloride at Low Temperature. Plant Physiol. 1964 Mar;39(2):254–262. doi: 10.1104/pp.39.2.254. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Mesquita J. F. Electron microscope study of the origin and development of the vacuoles in root-tip cells of Lupinus albus L. J Ultrastruct Res. 1969 Feb;26(3):242–250. doi: 10.1016/s0022-5320(69)80004-3. [DOI] [PubMed] [Google Scholar]
  15. Pierce W. S., Higinbotham N. Compartments and Fluxes of K, NA, and CL in Avena Coleoptile Cells. Plant Physiol. 1970 Nov;46(5):666–673. doi: 10.1104/pp.46.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rains D. W., Epstein E. Sodium absorption by barley roots: its mediation by mechanism 2 of alkali cation transport. Plant Physiol. 1967 Mar;42(3):319–323. doi: 10.1104/pp.42.3.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rains D. W., Epstein E. Sodium absorption by barley roots: role of the dual mechanisms of alkali cation transport. Plant Physiol. 1967 Mar;42(3):314–318. doi: 10.1104/pp.42.3.314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Torii K., Laties G. G. Dual mechanisms of ion uptake in relation to vacuolation in corn roots. Plant Physiol. 1966 May;41(5):863–870. doi: 10.1104/pp.41.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Welch R. M., Epstein E. The dual mechanisms of alkali cation absorption by plant cells: their parallel operation across the plasmalemma. Proc Natl Acad Sci U S A. 1968 Oct;61(2):447–453. doi: 10.1073/pnas.61.2.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Welch R. M., Epstein E. The plasmalemma: seat of the type 2 mechanisms of ion absorption. Plant Physiol. 1969 Feb;44(2):301–304. doi: 10.1104/pp.44.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES