Abstract
d-Glucose 6-phosphate cycloaldolase is inhibited 83% by 0.66 mm EDTA and stimulated 1.7-fold by 0.6 mm KCl. Dihydroxyacetone phosphate, an analog of the last three carbons in the proposed intermediate, d-xylo-5-hexulose 6-phosphate, acts as a partially competitive inhibitor. Treatment with NaBH4 in the presence of dihydroxyacetone phosphate does not cause permanent inactivation as would be expected if a Schiff base were being formed. In these properties it resembles a type II, metal-containing aldolase. Photooxidation in the presence of Rose Bengal inactivates this enzyme. NAD+ partially protects against this photooxidation. Cells grown on medium lacking myoinositol had four times as much enzyme activity as cells grown on medium containing 100 mg of myoinositol per liter.
Full text
PDF



Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Eisenberg F., Jr D-myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis. J Biol Chem. 1967 Apr 10;242(7):1375–1382. [PubMed] [Google Scholar]
- HORECKER B. L., ROWLEY P. T., GRAZI E., CHENG T., TCHOLA O. THE MECHANISM OF ACTION OF ALDOLASES. IV. LYSINE AS THE SUBSTRATE-BINDING SITE. Biochem Z. 1963;338:36–51. [PubMed] [Google Scholar]
- Hoffee P., Lai C. Y., Pugh E. L., Horecker B. L. The function of histidine residues in rabbit muscle aldolase. Proc Natl Acad Sci U S A. 1967 Jan;57(1):107–113. doi: 10.1073/pnas.57.1.107. [DOI] [PMC free article] [PubMed] [Google Scholar]
- RICHARDS O. C., RUTTER W. J. Comparative properties of yeast and muscle aldolase. J Biol Chem. 1961 Dec;236:3185–3192. [PubMed] [Google Scholar]
- Sherman W. R., Stewart M. A., Zinbo M. Mass spectrometric study on the mechanism of D-glucose 6-phosphate-L-myo-inositol 1-phosphate cyclase. J Biol Chem. 1969 Oct 25;244(20):5703–5708. [PubMed] [Google Scholar]