Abstract
The isotherm for glucose absorption by aged potato (Solanum tuberosum var. Russet Burbank) discs shows four distinct phases in the concentration ranges 1.0 to 75 μm, 75 μm to 1.5 mm, 1.5 to 15 mm, and 15 to 100 mm, respectively. Each segment of the multiphasic isotherm, when plotted reciprocally by the method of Lineweaver and Burk or of Hofstee, without regard for uptake in earlier phases, indicates absorption rate to be a hyperbolic function of concentration. The observations suggest that glucose uptake is carrier-mediated, and that the transport barrier undergoes a series of all-or-none transformations at critical external concentrations, yielding successive new and higher values for the parameters Km and Vmax 3-O-Methyl glucose, a nonmetabolizable analogue of glucose, shows the same multiphasic absorption isotherm, with Km values essentially similar to those for glucose uptake, and Vmax values somewhat lower than those for glucose absorption. Whereas the first three phases of the absorption isotherm are taken to reflect passage across the plasma membrane, the fourth phase may reflect kinetics of glucose or 3-O-methyl glucose transport to the vacuole.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ATKINSON D. E., HATHAWAY J. A., SMITH E. C. KINETICS OF REGULATORY ENZYMES. KINETIC ORDER OF THE YEAST DIPHOSPHOPYRIDINE NUCLEOTIDE ISOCITRATE DEHYDROGENASE REACTION AND A MODEL FOR THE REACTION. J Biol Chem. 1965 Jun;240:2682–2690. [PubMed] [Google Scholar]
- Benson J. A., Jr, Rampone A. J. Gastrointestinal absorption. Annu Rev Physiol. 1966;28:201–226. doi: 10.1146/annurev.ph.28.030166.001221. [DOI] [PubMed] [Google Scholar]
- CHRISTENSEN H. N. A TRANSPORT SYSTEM SERVING FOR MONO- AND DIAMINO ACIDS. Proc Natl Acad Sci U S A. 1964 Feb;51:337–344. doi: 10.1073/pnas.51.2.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cram W. J. Short term influx as a measure of influx across the plasmalemma. Plant Physiol. 1969 Jul;44(7):1013–1015. doi: 10.1104/pp.44.7.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein E., Rains D. W. CARRIER-MEDIATED CATION TRANSPORT IN BARLEY ROOTS: KINETIC EVIDENCE FOR A SPECTRUM OF ACTIVE SITES. Proc Natl Acad Sci U S A. 1965 Jun;53(6):1320–1324. doi: 10.1073/pnas.53.6.1320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein E., Rains D. W., Elzam O. E. RESOLUTION OF DUAL MECHANISMS OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Proc Natl Acad Sci U S A. 1963 May;49(5):684–692. doi: 10.1073/pnas.49.5.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GOLDSTEIN M. S., MULLICK V., HUDDLESTUN B., LEVINE R. Action of muscular work on transfer of sugars across cell barriers; comparison with action of insulin. Am J Physiol. 1953 May;173(2):212–216. doi: 10.1152/ajplegacy.1953.173.2.212. [DOI] [PubMed] [Google Scholar]
- Grant B. R., Beevers H. Absorption of Sugars by Plant Tissues. Plant Physiol. 1964 Jan;39(1):78–85. doi: 10.1104/pp.39.1.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOFSTEE B. H. J. On the evaluation of the constants Vm and KM in enzyme reactions. Science. 1952 Sep 26;116(3013):329–331. doi: 10.1126/science.116.3013.329. [DOI] [PubMed] [Google Scholar]
- Laties G. G. The Relation of Glucose Absorption to Respiration in Potato Slices. Plant Physiol. 1964 May;39(3):391–397. doi: 10.1104/pp.39.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ling G. N. All-or-none adsorption by living cells and model protein-water systems: discussion of the problem of "permease-induction" and determination of secondary and tertiary structures of proteins. Fed Proc. 1966 May-Jun;25(3):958–970. [PubMed] [Google Scholar]
- Torii K., Laties G. G. Dual mechanisms of ion uptake in relation to vacuolation in corn roots. Plant Physiol. 1966 May;41(5):863–870. doi: 10.1104/pp.41.5.863. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welch R. M., Epstein E. The plasmalemma: seat of the type 2 mechanisms of ion absorption. Plant Physiol. 1969 Feb;44(2):301–304. doi: 10.1104/pp.44.2.301. [DOI] [PMC free article] [PubMed] [Google Scholar]