Abstract
Selaginella willdenovii Baker is a prostrate vascular cryptogam with a dorsiventral stem. At each major branching of the stem apex a dorsal and a ventral angle meristem is formed. The ventral meristem becomes determined as a root, and the dorsal meristem as a shoot. The present investigation examined the distribution and transport of 14C-indoleacetic acid through stem tissues as a basis for the pattern of meristem determination. Externally applied indoleacetic acid is transported into receiver blocks with a velocity of 12 millimeters per hour. Much of the auxin becomes immobilized in the tissue and is not transported. The polar ratio of auxin transport is approximately 2. Auxin is transported equally on the dorsal and the ventral sides of the stem axis, and the auxin flux in vascular tissue is twice that in the cortex. In the branch junctions twice as much auxin is transported on the dorsal side as on the ventral side, and this is held to be the consequence of the lateral branch vascular tissue connecting with the dorsal and median, but not with the ventral vascular strand of the stem axis.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Helen M., Goldsmith M., Thimann K. V. Some Characteristics of Movement of Indoleacetic Acid in Coleoptiles of Avena. I. Uptake, Destruction, Immobilization, & Distribution of IAA During Basipetal Translocation. Plant Physiol. 1962 Jul;37(4):492–505. doi: 10.1104/pp.37.4.492. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKOOG F., MILLER C. O. Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp Soc Exp Biol. 1957;11:118–130. [PubMed] [Google Scholar]
- Veen H., Jacobs W. P. Transport and metabolism of indole-3-acetic Acid in coleus petiole segments of increasing age. Plant Physiol. 1969 Aug;44(8):1157–1162. doi: 10.1104/pp.44.8.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]