Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Apr;51(4):660–666. doi: 10.1104/pp.51.4.660

Biosynthesis and Accumulation of Microgram Quantities of Chlorophyll by Developing Chloroplasts in Vitro1

Constantin A Rebeiz a,2, Julian C Crane a, Chic Nishijima a, Carole C Rebeiz a
PMCID: PMC366325  PMID: 16658389

Abstract

Developing chloroplasts were incubated under conditions previously shown to induce protochlorophyll and chlorophyll biosynthesis, as well as chloroplast maintenance and partial differentiation in vitro. In the presence of air, δ-aminolevulinic acid, coenzyme A, glutathione, potassium phosphate, methyl alcohol, magnesium, nicotinamide adenine dinucleotide, and adenosine triphosphate, microgram quantities of chlorophyll accumulated after 1 hour of incubation. Part of the chlorophyll was not extractable in organic solvents; it is referred to as bound chlorophyll. The amount of bound chlorophyll depended on the degree of cotyledon greening at the time of plastid isolation. Etioplasts with or without a lag phase of chlorophyll biosynthesis synthesized nonphototransformable protochlorophyll and smaller amounts of extractable chlorophyll. As the greening of excised cotyledons progressed, more of the chlorophyll became bound before and after in vitro incubation. It is suggested that this increase in the fraction of bound chlorophyll reflects the biosynthesis of membrane-bound chlorophyll receptor sites. In the absence of cofactors, chlorophyll biosynthesis was blocked and porphyrins accumulated, indicating damage of the chlorophyll biosynthetic chain. It is concluded that chlorophyll accumulation constitutes a potentially convenient tool for the study of thylakoid membrane biogenesis in vitro.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Eytan G., Ohad I. Biogenesis of chloroplast membranes. VI. Cooperation between cytoplasmic and chloroplast ribosomes in the synthesis of photosynthetic lamellar proteins during the greening process in a mutant of Chlamydomonas reinhardi y-1. J Biol Chem. 1970 Sep 10;245(17):4297–4307. [PubMed] [Google Scholar]
  2. Hardy S. I., Castelfranco P. A., Rebeiz C. A. Effect of the Hypocotyl Hook on Chlorophyll Accumulation in Excised Cotyledons of Cucumis sativus L. Plant Physiol. 1971 May;47(5):705–708. doi: 10.1104/pp.47.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hardy S. I., Castelfranco P. A., Rebeiz C. A. Effect of the hypocotyl hook on greening in etiolated cucumber cotyledons. Plant Physiol. 1970 Nov;46(5):705–707. doi: 10.1104/pp.46.5.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. REBEIZ C. A., CASTELFRANCO P., ENGELBRECHT A. H. FRACTIONATION AND PROPERTIES OF AN EXTRA-MITOCHONDRIAL ENZYME SYSTEM FROM PEANUTS CATALYZING THE BETA-OXIDATION OF PALMITIC ACID. Plant Physiol. 1965 Mar;40:281–286. doi: 10.1104/pp.40.2.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Rebeiz C. A., Castelfranco P. A. Chlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):33–37. doi: 10.1104/pp.47.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Rebeiz C. A., Castelfranco P. A. Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):24–32. doi: 10.1104/pp.47.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rebeiz C. A., Crane J. C., Nishijima C. The biosynthesis of metal porphyrins by subchloroplastic fractions. Plant Physiol. 1972 Jul;50(1):185–186. doi: 10.1104/pp.50.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Rebeiz C. A., Haidar M. A., Yaghi M. Porphyrin Biosynthesis in Cell-free Homogenates from Higher Plants. Plant Physiol. 1970 Oct;46(4):543–549. doi: 10.1104/pp.46.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Rebeiz C. A., Yaghi M., Abou-Haidar M. Photochlorophyll Biosynthesis in Cucumber (Cucumis sativus, L.) Cotyledons. Plant Physiol. 1970 Jul;46(1):57–63. doi: 10.1104/pp.46.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Wellburn F. A., Wellburn A. R. Chlorophyll synthesis by isolated intact etioplasts. Biochem Biophys Res Commun. 1971 Nov 5;45(3):747–750. doi: 10.1016/0006-291x(71)90480-3. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES