Abstract
When cyclic photophosphorylation is inhibited in Chlorella vulgaris cells by carbonylcyanide-trifluoromethoxy phenylhy-drazone, photosynthetic CO2-fixation under anaerobic conditions exhibits a distinct lag. Under the same conditions, the light-dependent formation of ribulose diphosphate shows also this lag. It is concluded that cyclic photophosphorylation is required to fill up the pools of phosphorylated intermediates of the Calvin cycle at a time when noncyclic photophosphorylation cannot yet efficiently operate. Under aerobic conditions, the initial energy demand can be accommodated by respiratory ATP or cyclic photophosphorylation or both. Evidence for stoichiometric participation of cyclic photophosphorylation in photosynthesis is still lacking.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnon D. I. Photosynthetic activity of isolated chloroplasts. Physiol Rev. 1967 Jul;47(3):317–358. doi: 10.1152/physrev.1967.47.3.317. [DOI] [PubMed] [Google Scholar]
- Klob W., Kandler O., Tanner W. Regulation of ribulose diphosphate formation in vivo by light. Plant Physiol. 1972 Jun;49(6):904–906. doi: 10.1104/pp.49.6.904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Latzko E., von Garnier R., Gibbs M. Effect of photosynthesis, photosynthetic inhibitors and oxygen on the activity of ribulose 5-phosphate kinase. Biochem Biophys Res Commun. 1970;39(6):1140–1144. doi: 10.1016/0006-291x(70)90678-9. [DOI] [PubMed] [Google Scholar]
- MACROBBIE E. A. THE NATURE OF THE COUPLING BETWEEN LIGHT ENERGY AND ACTIVE ION TRANSPORT IN NITELLA TRANSLUCENS. Biochim Biophys Acta. 1965 Jan 25;94:64–73. doi: 10.1016/0926-6585(65)90008-7. [DOI] [PubMed] [Google Scholar]
- Pratt L. H., Bishop N. I. Chloroplast reactions of photosynthetic mutants of Scenedesmus obliquus. Biochim Biophys Acta. 1968 Apr 2;153(3):664–674. doi: 10.1016/0005-2728(68)90193-x. [DOI] [PubMed] [Google Scholar]
- Ramírez J. M., Campo F. F., Arnon D. I. Photosynthetic phosphorylation as energy source for protein synthesis and carbon dioxide assimilation by chloroplasts. Proc Natl Acad Sci U S A. 1968 Feb;59(2):606–612. doi: 10.1073/pnas.59.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schacter B., Eley J. H., Gibbs M. Involvement of Photosynthetic Carbon Reduction Cycle Intermediates in CO(2) Fixation and O(2) Evolution by Isolated Chloroplasts. Plant Physiol. 1971 Dec;48(6):707–711. doi: 10.1104/pp.48.6.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schürmann P., Buchanan B. B., Arnon D. I. Role of cyclic photophosphorylation in photosynthetic carbon dioxide assimilation by isolated chloroplasts. Biochim Biophys Acta. 1972 Apr 20;267(1):111–124. doi: 10.1016/0005-2728(72)90143-0. [DOI] [PubMed] [Google Scholar]
- Tanner W., Dächsel L., Kandler O. Effects of DCMU and Antimycin A on Photoassimilation of Glucose in Chlorella. Plant Physiol. 1965 Nov;40(6):1151–1156. doi: 10.1104/pp.40.6.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tanner W., Loffler M., Kandler O. Cyclic Photophosphorylation in Vivo and its Relation to Photosynthetic CO(2)-Fixation. Plant Physiol. 1969 Mar;44(3):422–428. doi: 10.1104/pp.44.3.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
- WIESSNER W. QUANTUM REQUIREMENT FOR ACETATE ASSIMILATION AND ITS SIGNIFICANCE FOR QUANTUM MEASUREMENTS IN PHOTOPHOSPHORYLATION. Nature. 1965 Jan 2;205:56–57. doi: 10.1038/205056a0. [DOI] [PubMed] [Google Scholar]