Abstract
The kinetics of vanadium absorption by excised barley (Hordeum vulgare L., cv. Eire) roots were investigated with respect to ionic species of V in solution, time and concentration dependence, Ca sensitivity, and interaction with various anions, cations, and pH levels. The role of metabolism in V absorption was also studied using anaerobic treatment (N2 gas) and chemical inhibitors (NaN3, KCN, or 2,4-dinitrophenol). Approximately one-third of the labeled V initially taken up by excised roots was desorbed to a constant level after 45 min in unlabeled V solutions. The rate of absorption of labeled V from 5 μm NH4VO3 solutions containing 0.5 mm CaSO4 was constant for at least 3 hours. Omission of Ca resulted in a 72% reduction in V uptake when compared to controls with 0.5 mm CaSO4. The rate of uptake of V was highest at pH 4 but dropped to a very low level at pH 10. It was relatively constant between the pH levels of 5 and 8 at which the VO3− ion is the predominant ionic species in solution. The rate of absorption of V was followed as a function of concentrations from 0.5 to 100 μm NH4VO3. It was found to be a linear function of concentration and did not follow saturation kinetics. Absorption experiments carried out with labeled V from either NaVO3 or NH4VO3 sources gave similar results. No anion studied (i.e. HPO42−, HAsO42−, MoO42−, SeO42−, SeO32−, CrO42−, BO33−, No3−, and Cl−) interfered appreciably (i.e. less than 30% inhibition) with the absorption of labeled V. Anaerobic treatment of absorption solution with N2 gas did not inhibit V absorption by excised roots. The results obtained using chemical inhibitors were not consistent. It was concluded that V is not actively absorbed by excised barley roots.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ARNON D. I., WESSEL G. Vanadium as an essential element for green plants. Nature. 1953 Dec 5;172(4388):1039–1040. doi: 10.1038/1721039a0. [DOI] [PubMed] [Google Scholar]
- Benemann J. R., McKenna C. E., Lie R. F., Traylor T. G., Kamen M. D. The vanadium effect in nitrogen fixation by azotobacter. Biochim Biophys Acta. 1972 Mar 30;264(1):25–38. doi: 10.1016/0304-4165(72)90113-4. [DOI] [PubMed] [Google Scholar]
- Elzam O. E., Epstein E. Absorption of Chloride by Barley Roots: Kinetics and Selectivity. Plant Physiol. 1965 Jul;40(4):620–624. doi: 10.1104/pp.40.4.620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epstein E. The essential role of calcium in selective cation transport by plant cells. Plant Physiol. 1961 Jul;36(4):437–444. doi: 10.1104/pp.36.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Läuchli A., Epstein E. Transport of potassium and rubidium in plant roots: the significance of calcium. Plant Physiol. 1970 May;45(5):639–641. doi: 10.1104/pp.45.5.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rains D. W., Schmid W. E., Epstein E. Absorption of Cations by Roots. Effects of Hydrogen Ions and Essential Role of Calcium. Plant Physiol. 1964 Mar;39(2):274–278. doi: 10.1104/pp.39.2.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHROEDER H. A., BALASSA J. J., TIPTON I. H. ABNORMAL TRACE METALS IN MAN--VANADIUM. J Chronic Dis. 1963 Oct;16:1047–1071. doi: 10.1016/0021-9681(63)90041-9. [DOI] [PubMed] [Google Scholar]
- Schwarz K., Milne D. B. Growth effects of vanadium in the rat. Science. 1971 Oct 22;174(4007):426–428. doi: 10.1126/science.174.4007.426. [DOI] [PubMed] [Google Scholar]
- Singh B., Wort D. J. Effect of Vanadium on Growth, Chemical Composition, and Metabolic Processes of Mature Sugar Beet (Beta vulgaris L.) Plants. Plant Physiol. 1969 Sep;44(9):1321–1327. doi: 10.1104/pp.44.9.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
