Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 May;51(5):984–986. doi: 10.1104/pp.51.5.984

Thymidine-phosphorylating Activity in γ-Plantlets

Separation of Onset of Activity from Deoxyribonucleic Acid Synthesis

Otto J Schwarz a,1,2, Alan H Haber b
PMCID: PMC366387  PMID: 16658451

Full text

PDF
984

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arima T., Masaka M., Shiosaka T., Fujii S., Okuda H. Alternative methods of thymidine phosphorylation in different organisms. Biochim Biophys Acta. 1971 Aug 26;246(2):184–193. doi: 10.1016/0005-2787(71)90126-2. [DOI] [PubMed] [Google Scholar]
  2. BOLLUM F. J., ANDEREGG J. W., McELYA A. M., POTTER V. R. Nucleic acid metabolism in regenerating rat liver. VII. Effect of x-radiation on enzymes of DNA synthesis. Cancer Res. 1960 Jan;20:138–143. [PubMed] [Google Scholar]
  3. BOLLUM F. J., POTTER V. R. Nucleic acid metabolism in regenerating rat liver. VI. Soluble enzymes which convert thymidine to thymidine phosphates and DNA. Cancer Res. 1959 Jun;19(5):561–565. [PubMed] [Google Scholar]
  4. BRAWERMAN G., CHARGAFF E. On the distribution and biological significance of the nucleoside phosphotransferases. Biochim Biophys Acta. 1955 Apr;16(4):524–532. doi: 10.1016/0006-3002(55)90273-0. [DOI] [PubMed] [Google Scholar]
  5. BRAWERMAN G., CHARGAFF E. On the synthesis of nucleotides by nucleoside phosphotransferases. Biochim Biophys Acta. 1954 Dec;15(4):549–559. doi: 10.1016/0006-3002(54)90013-x. [DOI] [PubMed] [Google Scholar]
  6. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brent T. P., Butler J. A., Crathorn A. R. Variations in phosphokinase activities during the cell cycle in synchronous populations of HeLa cells. Nature. 1965 Jul 10;207(993):176–177. doi: 10.1038/207176a0. [DOI] [PubMed] [Google Scholar]
  8. Cabela E., Altmann H. Bestimmung der Strahlenwirkung auf die Thymidinkinaseaktivität innerhalb eines Zellzyklus syndhroner Chlorella. Z Naturforsch B. 1971 Feb;26(2):141–143. doi: 10.1515/znb-1971-0217. [DOI] [PubMed] [Google Scholar]
  9. Deng Q. I., Ives D. H. Modes of nucleoside phosphorylation in plants: studies on the apparent thymidine kinase and true uridine kinase of seedlings. Biochim Biophys Acta. 1972 Aug 25;277(2):235–244. [PubMed] [Google Scholar]
  10. HOTTA Y., STERN H. Molecular facets of mitotic regulation. II. Factors underlying the removal of thymidine kinase. Proc Natl Acad Sci U S A. 1963 Jun;49:861–865. doi: 10.1073/pnas.49.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. SAGAN L. AN UNUSUAL PATTERN OF TRITIATED THYMIDINE INCORPORATION IN EUGLENA. J Protozool. 1965 Feb;12:105–109. doi: 10.1111/j.1550-7408.1965.tb01822.x. [DOI] [PubMed] [Google Scholar]
  12. Williams A. F. Deoxythymidine metabolism in avian erythroid cells. J Cell Sci. 1972 Nov;11(3):777–784. doi: 10.1242/jcs.11.3.777. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES