Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Jun;51(6):1051–1054. doi: 10.1104/pp.51.6.1051

Enzymatic Fractionation of Carbon Isotopes by Phosphoenolpyruvate Carboxylase from C4 Plants 1

Tom Whelan a, W M Sackett a, C R Benedict b
PMCID: PMC366402  PMID: 16658463

Abstract

The carbon atoms of glucose and malate in C4 plants are 2 to 3‰ enriched in 12C with respect to atmospheric CO2; whereas these intermediates in C3 plants are 15 to 18‰ enriched with 12C with respect to atmospheric CO2. The enzymatic synthesis of malate from phosphoenolpyruvate and bicarbonate in preparations of leaves of Sorghum bicolor, Haygrazer result in a carbon isotope fractionation of about 3‰. The enzymatic synthesis of phosphoglyceric acid from ribulose 1,5-diP and CO2 in these preparations (contaminated with carbonic anhydrase) at 24 C and 37 C result in a carbon isotope fractionation of 33.7‰ and 18.3‰, respectively. These data are consistent with the conclusion that the small enrichment of 12C in the carbon atoms of malate and glucose (with respect to atmospheric CO2) in leaves of Sorghum bicolor, Haygrazer occurs at the phosphoenolpyruvate carboxylase step.

Full text

PDF
1051

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  2. Benedict C. R., Kohel R. J. Photosynthetic rate of a virescent cotton mutant lacking chloroplast grana. Plant Physiol. 1970 Apr;45(4):519–521. doi: 10.1104/pp.45.4.519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper T. G., Filmer D. The active species of "CO2" utilized by ribulose diphosphate carboxylase. J Biol Chem. 1969 Feb 10;244(3):1081–1083. [PubMed] [Google Scholar]
  4. Cooper T. G., Wood H. G. The carboxylation of phosphoenolpyruvate and pyruvate. II. The active species of "CO2" utilized by phosphoenlpyruvate carboxylase and pyruvate carboxylase. J Biol Chem. 1971 Sep 10;246(17):5488–5490. [PubMed] [Google Scholar]
  5. Edwards G. E., Black C. C. Isolation of Mesophyll Cells and Bundle Sheath Cells from Digitaria sanguinalis (L.) Scop. Leaves and a Scanning Microscopy Study of the Internal Leaf Cell Morphology. Plant Physiol. 1971 Jan;47(1):149–156. doi: 10.1104/pp.47.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McKINNEY C. R., McCREA J. M., EPSTEIN S., ALLEN H. A., UREY H. C. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum. 1950 Aug;21(8):724–730. doi: 10.1063/1.1745698. [DOI] [PubMed] [Google Scholar]
  7. O'neal D., Hew C. S., Latzko E., Gibbs M. Photosynthetic carbon metabolism of isolated corn chloroplasts. Plant Physiol. 1972 Apr;49(4):607–614. doi: 10.1104/pp.49.4.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Smith B. N., Epstein S. Two categories of c/c ratios for higher plants. Plant Physiol. 1971 Mar;47(3):380–384. doi: 10.1104/pp.47.3.380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ting I. P. CO(2) Metabolism in Corn Roots. III. Inhibition of P-enolpyruvate Carboxylase by l-malate. Plant Physiol. 1968 Dec;43(12):1919–1924. doi: 10.1104/pp.43.12.1919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Whelan T., Sackett W. M., Benedict C. R. Carbon isotope discrimination in a plant possessing the C4 dicarboxylic acid pathway. Biochem Biophys Res Commun. 1970 Dec 9;41(5):1205–1210. doi: 10.1016/0006-291x(70)90214-7. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES