Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Jun;51(6):1076–1081. doi: 10.1104/pp.51.6.1076

Malate Dehydrogenases of Pisum sativum

Tissue Distribution and Properties of the Particulate Forms

William C Zschoche 1, Irwin P Ting 1
PMCID: PMC366408  PMID: 16658469

Abstract

Mitochondria and leaf microbodies isolated from leaves of pea (Pisum sativum) by sucrose density gradient centrifugation were each shown to have a unique form (isoenzyme) of malate dehydrogenase (EC 1.1.1.37) based on chromatographic and kinetic properties. Root organelle preparations were shown to contain only a mitochondrial malate dehydrogenase with physical and kinetic properties similar to the leaf form. The absence of a detectable root microbody malate dehydrogenase similar to the leaf enzyme, which is intermediate in electrophoretic and chromatographic properties between the mitochondrial and soluble isoenzymes, was confirmed by diethylaminoethyl cellulose column chromatography and starch-gel electrophoresis of total homogenates from leaf and root tissue. These findings tend to support the role of the leaf microbody isoenzyme in a pathway unique to photosynthetic tissue.

Full text

PDF
1076

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Breidenbach R. W. Characterization of some glyoxysomal proteins. Ann N Y Acad Sci. 1969 Dec 19;168(2):342–347. doi: 10.1111/j.1749-6632.1969.tb43120.x. [DOI] [PubMed] [Google Scholar]
  3. Frederick S. E., Newcomb E. H. Cytochemical localization of catalase in leaf microbodies (peroxisomes). J Cell Biol. 1969 Nov;43(2):343–353. doi: 10.1083/jcb.43.2.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Huang A. H., Beevers H. Isolation of microbodies from plant tissues. Plant Physiol. 1971 Nov;48(5):637–641. doi: 10.1104/pp.48.5.637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Longo G. P., Scandalios J. G. Nuclear gene control of mitochondrial malic dehydrogenase in maize. Proc Natl Acad Sci U S A. 1969 Jan;62(1):104–111. doi: 10.1073/pnas.62.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lyttleton J. W. Use of colloidal silica in density gradients to separate intact chloroplasts. Anal Biochem. 1970 Nov;38(1):277–281. doi: 10.1016/0003-2697(70)90177-6. [DOI] [PubMed] [Google Scholar]
  8. MAEHLY A. C., CHANCE B. The assay of catalases and peroxidases. Methods Biochem Anal. 1954;1:357–424. doi: 10.1002/9780470110171.ch14. [DOI] [PubMed] [Google Scholar]
  9. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  10. Markert C. L., Møller F. MULTIPLE FORMS OF ENZYMES: TISSUE, ONTOGENETIC, AND SPECIES SPECIFIC PATTERNS. Proc Natl Acad Sci U S A. 1959 May;45(5):753–763. doi: 10.1073/pnas.45.5.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mukerji S. K., Ting I. P. Malic dehydrogenase isoenzymes in green stem tissue of Opuntia: isolation and characterization. Arch Biochem Biophys. 1969 May;131(2):336–351. doi: 10.1016/0003-9861(69)90406-8. [DOI] [PubMed] [Google Scholar]
  12. Rocha V., Ting I. P. Malate dehydrogenases of leaf tissue from Spinacia oleracea: properties of three isoenzymes. Arch Biochem Biophys. 1971 Nov;147(1):114–122. doi: 10.1016/0003-9861(71)90316-x. [DOI] [PubMed] [Google Scholar]
  13. Rocha V., Ting I. P. Tissue distribution of microbody, mitochondrial, and soluble malate dehydrogenase isoenzymes. Plant Physiol. 1970 Nov;46(5):754–756. doi: 10.1104/pp.46.5.754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ruis H. Isolation and characterization of peroxisomes from potato tubers. Hoppe Seylers Z Physiol Chem. 1971 Aug;352(8):1105–1112. doi: 10.1515/bchm2.1971.352.2.1105. [DOI] [PubMed] [Google Scholar]
  15. SIMON E. W. The effect of digitonin on the cytochrome c oxidase activity of plant mitochondria. Biochem J. 1958 May;69(1):67–74. doi: 10.1042/bj0690067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tan K. B. A simple device for fractionating density gradients. Anal Biochem. 1972 Jan;45(1):306–308. doi: 10.1016/0003-2697(72)90031-0. [DOI] [PubMed] [Google Scholar]
  17. Ting I. P. Malic dehydrogenases in corn root tips. Arch Biochem Biophys. 1968 Jul;126(1):1–7. doi: 10.1016/0003-9861(68)90552-3. [DOI] [PubMed] [Google Scholar]
  18. Yamazaki R. K., Tolbert N. E. Enzymic characterization of leaf peroxisomes. J Biol Chem. 1970 Oct 10;245(19):5137–5144. [PubMed] [Google Scholar]
  19. Yamazaki R. K., Tolbert N. E. Malate dehydrogenase in leaf peroxisomes. Biochim Biophys Acta. 1969 Mar 18;178(1):11–20. doi: 10.1016/0005-2744(69)90127-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES