Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Nov;52(5):459–461. doi: 10.1104/pp.52.5.459

Respiration-independent Binding of SR2+ to Bean Mitochondria 1

H M Johnson a,2, R H Wilson a
PMCID: PMC366523  PMID: 16658583

Abstract

Binding of Sr2+ to bean mitochondria (Phaseolus vulgaris) shows a dissociation constant of 25 × 10−6 and results in 40 to 50 nmoles of Sr2+ bound per mg protein. The binding is partially inhibited by valinomycin plus K+, 2, 4-dinitrophenol, as well as ruthenium red at a level of the 120 nmoles per mg protein. These compounds also partially inhibit active uptake of Sr2+. Calcium and Mg2+ also partially inhibit binding in the same magnitude as previously reported for inhibition of transport. Phosphate which is required for divalent cation transport is without effect on the binding of Sr2+. The possible role of the observed binding sites in divalent cation transport is discussed.

Full text

PDF
459

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carafoli E., Balcavage W. X., Lehninger A. L., Mattoon J. R. Ca2+ metabolism in yeast cells and mitochondria. Biochim Biophys Acta. 1970 Apr 7;205(1):18–26. doi: 10.1016/0005-2728(70)90057-5. [DOI] [PubMed] [Google Scholar]
  2. Carafoli E., Lehninger A. L. A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem J. 1971 May;122(5):681–690. doi: 10.1042/bj1220681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Johnson H. M., Wilson R. H. Sr 2+ uptake by bean (Phaseolus vulgaris) mitochondria. Biochim Biophys Acta. 1972 May 25;267(2):398–408. doi: 10.1016/0005-2728(72)90127-2. [DOI] [PubMed] [Google Scholar]
  4. Lehninger A. L., Carafoli E., Rossi C. S. Energy-linked ion movements in mitochondrial systems. Adv Enzymol Relat Areas Mol Biol. 1967;29:259–320. doi: 10.1002/9780470122747.ch6. [DOI] [PubMed] [Google Scholar]
  5. Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Moore C. L. Specific inhibition of mitochondrial Ca++ transport by ruthenium red. Biochem Biophys Res Commun. 1971 Jan 22;42(2):298–305. doi: 10.1016/0006-291x(71)90102-1. [DOI] [PubMed] [Google Scholar]
  7. Rasmussen H., Chance B., Ogata E. A mechanism for the reactions of calcium with mitochondria. Proc Natl Acad Sci U S A. 1965 May;53(5):1069–1076. doi: 10.1073/pnas.53.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Reynafarje B., Lehninger A. L. High affinity and low affinity binding of Ca++ by rat liver mitochondria. J Biol Chem. 1969 Feb 25;244(4):584–593. [PubMed] [Google Scholar]
  9. Rossi C. S., Vasington F. D., Carafoli E. The effect of ruthenium red on the uptake and release of Ca 2+ by mitochondria. Biochem Biophys Res Commun. 1973 Feb 5;50(3):846–852. doi: 10.1016/0006-291x(73)91322-3. [DOI] [PubMed] [Google Scholar]
  10. Rossi C., Azzi A., Azzone G. F. Ion transport in liver mitochondria. I. Metabolism-independent Ca++ binding and H+ release. J Biol Chem. 1967 Mar 10;242(5):951–957. [PubMed] [Google Scholar]
  11. Vasington F. D., Gazzotti P., Tiozzo R., Carafoli E. The effect of ruthenium red on Ca 2+ transport and respiration in rat liver mitochondria. Biochim Biophys Acta. 1972 Jan 21;256(1):43–54. doi: 10.1016/0005-2728(72)90161-2. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES