Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Nov;52(5):462–465. doi: 10.1104/pp.52.5.462

Incorporation of Carbohydrate Residues into Peroxidase Isoenzymes in Horseradish Roots

Jow Y Lew a,1, Leland M Shannon a
PMCID: PMC366524  PMID: 16658584

Abstract

Sliced root tissue of the horseradish plant (Armoracia rusticana), when incubated with mannose-U-14C, incorporated radioactivity into peroxidase isoenzymes. Over 90% of the radioactivity in the highly purified peroxidase isoenzymes was present in the neutral sugar residues of the molecule, i.e. fucose, arabinose, xylose, mannose. When the root slices were incubated simultaneously with leucine-4,5-3H and mannose-U-14C, cycloheximide strongly inhibited leucine incorporation into the peptide portion of peroxidase isoenzymes but had little effect on the incorporation of 14C into the neutral sugars. These results indicated that synthesis of the peptide portion of peroxidase was completed before the monosaccharide residues were attached to the molecule. This temporal relationship between the synthesis of protein and the attachment of carbohydrate residues in the plant glycoprotein, horseradish peroxidase, appears to be similar to that reported for glycoprotein biosynthesis in many mammalian systems.

Full text

PDF
462

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chrispeels M. J. Synthesis and secretion of hydroxyproline containing macromolecules in carrots. I. Kinetic analysis. Plant Physiol. 1969 Aug;44(8):1187–1193. doi: 10.1104/pp.44.8.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. DAVIDSON J. D., FEIGELSON P. Practical aspects of internal-sample liquid-scintillation counting. Int J Appl Radiat Isot. 1957 Apr;2(1):1–18. doi: 10.1016/0020-708x(57)90021-2. [DOI] [PubMed] [Google Scholar]
  3. Dashek W. V. Synthesis and Transport of Hydroxyproline-rich Components in Suspension Cultures of Sycamore-Maple Cells. Plant Physiol. 1970 Dec;46(6):831–838. doi: 10.1104/pp.46.6.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Lawford G. R., Schachter H. Biosynthesis of glycoprotein by liver. The incorporation in vivo of 14C-glucosamine into protein-bound hexosamine and sialic acid of rat liver subcellular fractions. J Biol Chem. 1966 Nov 25;241(22):5408–5418. [PubMed] [Google Scholar]
  5. Molnar J. Glycoproteins of Ehrlich ascites carcinoma cells. Incorporation of [14C]glucosamine and [14C]sialic acid into membrane proteins. Biochemistry. 1967 Oct;6(10):3064–3076. doi: 10.1021/bi00862a013. [DOI] [PubMed] [Google Scholar]
  6. Molnar J., Sy D. Attachment of glucosamine to protein at the ribosomal site of rat liver. Biochemistry. 1967 Jul;6(7):1941–1947. doi: 10.1021/bi00859a009. [DOI] [PubMed] [Google Scholar]
  7. Olson A. C. Proteins and Plant Cell Walls. Proline to Hydroxyproline in Tobacco Suspension Cultures. Plant Physiol. 1964 Jul;39(4):543–550. doi: 10.1104/pp.39.4.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Roberts R. M., Connor A. B., Cetorelli J. J. The formation of glycoproteins in tissues of higher plants. Specific labelling with D-(1- 14 C)glucosamine. Biochem J. 1971 Dec;125(4):999–1008. doi: 10.1042/bj1250999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  10. Shannon L. M., Kay E., Lew J. Y. Peroxidase isozymes from horseradish roots. I. Isolation and physical properties. J Biol Chem. 1966 May 10;241(9):2166–2172. [PubMed] [Google Scholar]
  11. Shannon L. M., Uritani I., Imaseki H. De novo synthesis of peroxidase isozymes in sweet potato slices. Plant Physiol. 1971 Apr;47(4):493–498. doi: 10.1104/pp.47.4.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. VOMHOF D. W., TUCKER T. C. THE SEPARATION OF SIMPLE SUGARS BY CELLULOSE THIN-LAYER CHROMATOGRAPHY. J Chromatogr. 1965 Feb;17:300–306. doi: 10.1016/s0021-9673(00)99872-8. [DOI] [PubMed] [Google Scholar]
  13. Wagner R. R., Cynkin M. A. Glycoprotein biosynthesis. Incorporation of glycosyl groups into endogenous acceptors in a Golgi apparatus-rich fraction of liver. J Biol Chem. 1971 Jan 10;246(1):143–151. [PubMed] [Google Scholar]
  14. Wagner R. R., Cynkin M. A. The incorporation of 14C-glucosamine from UDP-N-acetyl-14C-glucosamine into liver microsomal protein in vitro. Arch Biochem Biophys. 1969 Jan;129(1):242–247. doi: 10.1016/0003-9861(69)90171-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES