Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Nov;52(5):491–497. doi: 10.1104/pp.52.5.491

Steps in the Acquisition of Photosynthetic Competence by Plastids of Maize 1

John M Forger III a,2, Lawrence Bogorad a
PMCID: PMC366530  PMID: 16658590

Abstract

Coupling factor particles are associated with membranes of maize etioplasts (Lockshin et al., 1971. Biochim. Biophys. Acta 226: 366-382). In addition, several, but not all, of the polypeptides found in the photosynthetic lamellae of maize chloroplasts are present in etioplasts.

During the photoregulated maturation of chloroplasts from etioplasts, the membranes of the organelle acquire the capacity to carry on acid to base phosphorylation. The acquisition of this ability is closely correlated with the development of osmotic responsiveness and the appearance of a 46,000 dalton polypeptide in the membranes.

Full text

PDF
491

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DAVENPORT H. E. Cytochrome components in chloroplasts. Nature. 1952 Dec 27;170(4339):1112–1114. doi: 10.1038/1701112b0. [DOI] [PubMed] [Google Scholar]
  2. Forger J. M., 3rd, Bogorad L. Acid to base phosphorylation and membrane integrity in plastids of greening maize. Biochim Biophys Acta. 1971 Mar 2;226(2):383–392. doi: 10.1016/0005-2728(71)90105-8. [DOI] [PubMed] [Google Scholar]
  3. Horak A., Hill R. D. Coupling factor for photophosphorylation in bean etioplasts and chloroplasts. Can J Biochem. 1971 Feb;49(2):207–209. doi: 10.1139/o71-030. [DOI] [PubMed] [Google Scholar]
  4. Jagendorf A. T., Uribe E. ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci U S A. 1966 Jan;55(1):170–177. doi: 10.1073/pnas.55.1.170. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Lockshin A., Falk R. H., Bogorad L., Woodcock C. L. A coupling factor for photosynthetic phosphorylation from plastids of light- and dark-grown maize. Biochim Biophys Acta. 1971 Mar 2;226(2):366–382. doi: 10.1016/0005-2728(71)90104-6. [DOI] [PubMed] [Google Scholar]
  6. Remy R. Resolution of chloroplast lamellar proteins by electrophoresis in polyacrylamide gels. Different patterns obtained with fractions enriched in either chlorophyll a or chlorophyll b. FEBS Lett. 1971 Apr 2;13(6):313–317. doi: 10.1016/0014-5793(71)80249-1. [DOI] [PubMed] [Google Scholar]
  7. Uribe E. G., Jagendorf A. T. Membrane permeability and internal volume as factors in ATP synthesis by spinach chloroplasts. Arch Biochem Biophys. 1968 Nov;128(2):351–359. doi: 10.1016/0003-9861(68)90041-6. [DOI] [PubMed] [Google Scholar]
  8. Uribe E. G., Jagendorf A. T. On the localization of organic acids in Acid-induced ATP synthesis. Plant Physiol. 1967 May;42(5):697–705. doi: 10.1104/pp.42.5.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Uribe E. G., Jagendorf A. T. Organic Acid specificity for Acid-induced ATP synthesis by isolated chloroplasts. Plant Physiol. 1967 May;42(5):706–711. doi: 10.1104/pp.42.5.706. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES