Abstract
Background
Capture, handling and chemical restraint are basic techniques often needed for research or management purposes. The aim of this study was testing a combination of tiletamine-zolazepam (TZ) (3 mg/kg) and medetomidine (M) (0.05 mg/kg) on Eurasian wild boar (Sus scrofa). A total of 77 free-ranging wild boar were captured by means of portable cages and corral traps and then anaesthetized with intramuscular darts using a blowpipe. The individual response to chemical immobilization was characterized using anaesthetic, clinical, and serum biochemical variables. After the procedure, 14 of these wild boar were monitored for 20 days using GPS-GSM collars.
Results
Pre-release mortality during capture and handling (6.5%) was associated with severe trauma in corral traps. Capture specificity for wild boar was 96.3% and trapping effort was 16.5 days per captured wild boar. Mean induction period was 4.5 ± 2.2 min, hypnosis period enabling effective handling was 61.6 ± 25.4 min, and recovery period was 12.8 ± 12.1 min. No heart or respiratory failure due to added stress occurred and post-release monitoring by GPS-devices revealed no mortality due to anaesthesia. According to the best statistical model obtained, the main factor driving anaesthetic efficacy and stress indicators is trap type.
Conclusions
Both cage and corral traps are efficient methods to capture wild boar. Cage traps are safer, as demonstrated by mortality rates as well as anaesthetic, physiological, and serum biochemical responses. This anaesthetic protocol is useful for prolonged handling of wild boar and allows sampling and collecting data for ecological and epidemiological studies.
Keywords: Anaesthesia, Capture, Medetomidine, Stress, Tiletamine, Zolazepam, Wild boar
Background
Social sensitivity regarding environmental issues, animal health and animal welfare has increased worldwide [1,2]. These issues must be addressed when implementing research and management of wild ungulates [3,4], which usually include trapping free ranging animals. The Eurasian wild boar (Sus scrofa, L. 1758) is one of the terrestrial mammals with the broadest geographic range [5,6], and has an ecological, health and economic impact [7-9]. Several capture and handling studies, mostly using baited box traps and corral traps, have been carried out on this species [10-12]. Capture and either physical or chemical immobilization of wild boar convey risks of mortality, but chemical immobilization is usually required for handling [13-17]. Different factors, such as capture method, previous human-induced stress and environmental conditions may affect the efficacy of chemical restraint [18,19] and induce severe stress [14,17,19].
The most commonly drugs used in chemical immobilization of wild pig species are cyclohexamines (ketamine and tiletamine) and α2-adrenergic agonists (xylazine, X; detomidine; romifidine; medetomidine, M) [15-17,20,21]. Cyclohexamines are anaesthetics that cause electroencephalographic dissociation of the activity of the central nervous system, inducing visceral analgesia combined with superficial anaesthesia, persisting palpebral, laryngeal and pedal reflexes [22,23]. The α2-adrenergic agonists provide sedation, visceral analgesia and muscle relaxation [24-26]. The combination of these two types of drugs allows using lower doses to achieve hypnosis, analgesia and muscle relaxation [27]. The combination of α2-adrenergic agonists (M or X) and an opioid (morphine derivates) decreases the dose of the main anaesthetic, either propofol, thiopental, tiletamine or alfaxalone. This also minimizes the adverse effects of drugs used alone, e.g. agitated and violent recoveries in collared peccaries (Tayassu tajacu) anesthetized only with ketamine [13,28].
Several studies have assessed the usefulness of anaesthetic combinations to immobilize physically captured wild pig species [15-17,20,21]. The anaesthetic combination chosen in this study has been described for prolonged surgical procedures (high doses) by [20] (5 mg/kg of tiletamine-zolazepam, TZ and 0.1 mg/kg of M in 8 wild boar) and [29] (5 mg/kg of TZ and 0.025 mg/kg of M in 9 farmed will boar). Although serum biochemistry is a valuable tool to assess the physiological status of wild animals and the effect of handling and treatments, there is scarce knowledge on serum biochemistry values in wild boar [30-33], and few studies have investigated the physiological effects of anaesthesia after physical capture in this species [34].
The aims of this study were (1) to evaluate the efficiency and safety of a combination of TZ and M in free-ranging wild boar captured by means of cage and corral traps; and (2) to determine the factors affecting the anaesthetic and physiological individual response to chemical immobilization of wild boar physically captured with cage and corral-traps, using anaesthetic, clinical, and serum biochemical variables.
Methods
Study area and period
The study was conducted between February and November 2010 in Montes de Toledo (39° 25′ to 39° 16′ N, 4° 05′ to 4° 23′ W), in the region of Castilla-La Mancha, South-central Spain. This is a 36,000 hectares area where altitude ranges between 590 to 1010 meters a.s.l. Climate is Mediterranean, with an average temperature of 14.1°C. The habitat is characterized by evergreen oak (Quercus ilex) scrublands with scattered pastures and small crops, conforming dehesas (savannah-like habitats).
Capture method
Seven 3 x 1.2 meters portable cage traps [10] and seven corral traps each consisting of seven panels over 5 meters wide [11] were used to capture wild boar. The portable cage traps were triggered when a wild boar stepped on a mobile bottom platform in the centre of the trap, which closed simultaneously the two drop gates of the trap. The corral traps had a single drop door and a trigger mechanism of root sticks. Traps were baited with corn every 2–4 days both inside and outside the trap and monitored with camera traps (Model IR-3BU, Leaf River Outdoor, Taylorsville, Mississippi, USA) to determine the time of activation. Once activated, each trap was revised daily, early in the morning to avoid that the animals reached high temperatures within the traps (maximum temperature in daytime reached up to 36.9°C). Study procedures were approved by the Animal Experiment Committee of Castilla-La Mancha University and were designed and developed by scientists (B and C animal experimentation categories) approved by the Spanish Ethic Committee.
Anaesthesia and monitoring
A combination of TZ (Zoletil® 100 mg/ml, Virbac, France, target dose 3 mg/kg) and M (Medetor®, Virbac, France, target dose 0.05 mg/kg) was injected intramuscularly in the femoral region with 5 ml anaesthetic darts (Telinject®, Römerberg, Germany) using a 14 mm diameter blowpipe (Telinject®, Römerberg, Germany), after visually estimating the weight of each animal in the trap. After sedation, wild boar were removed from the traps and blindfolded.
Heart rate and oxygen saturation were measured and registered every 5 minutes from hypnosis to recovery using a portable modified pulse oximeter (G1B Pulse Oximeter, Quirumed®, Moncada, Spain). Respiratory rate was measured every 10 minutes by the same person by direct observation of chest wall movements. Rectal temperature was measured with a digital thermometer every 10 minutes. The following anaesthetic periods were registered: human presence until injection (HPI; from human arrival to the cage to injection time); induction period (IP; from injection to the loss of palpebral reflex and the possibility of handling); hypnosis period (HP; from loss of response to first movement and response to stimuli), and recovery period (RP; from first response to total coordination, walking without ataxia).
The wild boar captured were classified as juveniles (<24 months of age) or adults (>24 months of age) based on the eruption of molars and premolars [35,36]. Weight was measured with a scale, and total length (from snout to tail base) and thoracic perimeter were measured with measure tape and registered.
Blood was obtained from the ophthalmic sinus at the medial angle of the eye behind the nictitating membrane [37]. Blood samples were immediately refrigerated and transported to laboratory, within two hours after collection, where serum and plasma were obtained for biochemistry and blood smears were prepared.
Serum biochemistry
Serum alanine aminotransferase (ALT), alkaline phosphatase (AP), aspartate aminotransferase (AST), creatine kinase (CK), and lactate dehydrogenase (LDH) activities and serum lactate, glucose, cholesterol, triglycerides, urea, creatinine, sodium, and potassium concentrations were determined by means of an automated analyser (Olympus AU400, Olympus, Tokyo, Japan).
Post-release monitoring
Collars provided with a satellite position capture system (GPS) [38] and a global system for mobile communications (GSM) [39] were fitted to 14 wild boar over 40 kg. The collars were set to record one position every hour, sending encoded packets with 20 positions to the central station when mobile phone coverage was sufficient. Activity patterns were calculated for each collared animal by estimating the average speed obtained from the distance between two consecutive GPS locations. Post-capture monitoring was performed for 20 days. Collarless wild boar were ear-tagged. In addition, all the wild boar were identified with a microchip (FDX-B transponders, Allflex®, France) placed caudal to the ear. The entire procedure lasted less than 20 minutes in all cases. The body surface of the wild boar was wetted with cold water prior to release in order to avoid hyperthermia when rectal temperature exceeded 40°C.
Statistical analysis
Descriptive statistics were calculated for physiological variables and anaesthetic periods (Statistica 7, Statsoft®, Tulsa, USA). In order to compare the number of wild boar captured per trap type and the GPS activity patterns (average speed) during the day post-release (10 hours after) against the 3 successive monitoring days, Mann–Whitney’s U test was used. Identity link generalized linear models (GLMz) [40] were carried out to explain the dependent variables: anaesthetic periods (IP, HP and RP), physiological (body temperature, respiratory and heart rates), and biochemical (ALT, ALP, CK, AST, LDH, lactate, glucose, cholesterol, sodium, potassium, urea, creatinine, triglycerides and total proteins) values (SPSS Statistics 18 for Windows, IBM®, Armonk, USA). In case wild boar were recaptured only the first measure was used to build the GLMz. Also individuals presenting trauma or obvious cachexia likely due to generalized tuberculosis were not included in the models. Wild boar injected with α2-antagonist atipamezole (Antisedant® 5 mg/ml, Orion Pharma, Finland, target dose 0.20 mg/kg) were excluded from the statistics. Serum enzymatic activities, which showed exponential variations, as we all the length of IP, HP, and RP were logarithmically transformed, in order to avoid overdispersion. The categorical independent variables were sex (1 = male, 2 = female), age class (1 = juvenile, 2 = adult) and type of trap (1 = cage trap, 2 = corral trap). Independent variables included as covariates were anaesthetic dose, body condition (as chest circumference to body length ratio) and maximum environmental temperature recorded the day of capture.
Results
A total of 80 animals were captured: 77 wild boar, two adult badgers (Meles meles) and one yearling red deer (Cervus elaphus). Therefore, capture specificity for wild boar was 96.3%. The first capture took place on average 28.2 ± 8 days (range = 15–45) after starting baiting the trap. Each capture required on average 9 ± 3.6 visits to the trap (range = 4–16). Considering the baiting and trapping periods altogether, the average trapping effort was 16.5 ± 12.7 days per captured wild boar (Table 1).
Table 1.
Capture method | Number of traps | Days before activation (mean; range) | Days activated (mean; range) | Days of work | Person-days of work | Number of capture events | Number of multiple captures | Wild boar captured | Wild boar per capture (mean; range) | Mortality | Days per wild boar (mean; range) | Person-days per wild boar (mean; range) |
Gender and age class (Y=yearling; A=adult) |
|||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male |
Female |
|||||||||||||||
Y | A | Y | A | |||||||||||||
Cage-trap |
7 |
26; 11-44 |
1.8; 1-5 |
103 |
135 |
13 |
5 |
25 |
1.9; 1-5 |
1 |
21.8; 2-46 |
7.9; 1-16 |
7 |
8 |
6 |
4 |
Corral-trap |
7 |
28.9; 15-45 |
2.1; 1-3 |
114 |
154 |
11 |
9 |
52 |
4.7; 1-11 |
4 |
10.2; 4-33 |
4.8; 2-16 |
22 |
8 |
18 |
4 |
TOTAL | 14 | 27.4; 11-45 | 2; 1-5 | 217 | 289 | 24 | 14 | 77 | 3.2; 1-11 | 5 | 16.5; 2-46 | 6.5; 1-16 | 29 | 16 | 24 | 8 |
Pre-release mortality during capture and handling was 6.5% (n = 5); four deaths were associated with severe trauma (and subsequent euthanasia) in corral traps and one was due to hyperthermia (haemorrhages and cervical-thoracic congestion at necropsy) in a cage trap. The number of wild boar captured per trapping event was significantly higher for corral traps (4.73 ± 3.46) than for cage traps (1.92 ± 1.38) (Mann–Whitney U test; U = −2.36, p = 0.02) (Table 1). Capture selectivity by trap, gender, and age is also detailed in Table 1.
Out of the 77 captured wild boar, 42 were anaesthetized and 35 (weighing less than 15 kg) were handled without using chemical immobilization [41]. The mean dose used per anaesthetized wild boar was 2.9 ± 0.39 mg/kg of TZ and 0.048 ± 0.006 mg/kg of M. This was an 11% deviation from the target dose, due to errors in weight estimation. Double injection was needed only in one very excited and aggressive wild boar captured in a corral trap. Therefore, anaesthetic efficiency (percentage of fully anesthetized wild boar with a single injection) was 97.6%. For the 41 wild boar that received single injections, IP was 4.5 ± 2.2 min., HP enabling effective handling was 61.6 ± 25.4 min. and RP was 12.8 ± 12.1 min. The α2-antagonist atipamezole injected intramuscularly in 4 wild boar (40 min after anaesthetic drug injection) was effective in reversing immobilization, with recovery (total coordination) occurring 8.4 ± 2.3 min.
Figures 1 and 2 show average values and trends for respiratory rate and body temperature, and for heart rate and blood oxygen saturation, respectively. Respiratory rate, heart rate and rectal temperature decreased progressively, whereas oxygen saturation increased from the beginning of monitoring and remained stable between 90 and 96% SpO2 thereafter. No signs of vagal cardiorespiratory depression after drug administration were detected, but one wild boar presented transient atrio-ventricular arrhythmia during the deep anaesthetic phase. Body temperatures above 40°C were exceeded by 18 (47%) wild boar, of which 55% were males and 72% juveniles, mainly at the beginning of the anaesthesia.
After discarding recaptured wild boar (n = 1) and those presenting trauma (n = 5) or severe generalized tuberculosis (n = 2), the remaining 35 wild boar were included in the models. Table 2 shows the results of the GLMz and the value for each categorical variable to explain anaesthetic periods and biochemical variables. Tables 3 and 4 show the values for these variables.
Table 2.
Dependent variables |
Independent variables |
||||||
---|---|---|---|---|---|---|---|
Trap type | Gender | Age class | Dosage | Body condition | Environmental temperature | Deviance difference | |
Log induction period |
−0.41*** |
|
−0.28** |
|
−1.61** |
0.01* |
0.65 |
Log hypnosis period |
0.30* |
|
|
|
|
|
0.31 |
Log recovery period |
|
|
−0.6*** |
0.49** |
|
|
0.62 |
Initial respiratory rate |
|
|
|
0.21* |
−1.81** |
|
0.24 |
40 min respiratory rate |
|
|
|
|
|
|
0.59 |
Initial heart rate |
|
|
|
|
|
|
0.26 |
40 min heart rate |
−0.08* |
|
|
|
−0.48* |
|
0.36 |
Initial body temperature |
−1.17* |
|
|
|
|
0.10** |
0.78 |
40 min body temperature |
|
|
|
|
|
|
0.74 |
Log ALT |
|
|
|
−0.27** |
|
|
0.57 |
Log ALP |
|
|
0.24* |
−0.44*** |
|
|
0.63 |
Log CK |
|
|
|
−1.17*** |
3.85* |
|
0.62 |
Log AST |
|
−0.29* |
|
−0.62*** |
|
|
0.62 |
Log LDH |
|
|
|
−0.62*** |
2.259* |
|
0.59 |
Lactate |
−0.13* |
|
|
−0.18** |
|
|
0.24 |
Glucose |
−0.27*** |
|
|
|
−1.18** |
|
0.72 |
Cholesterol |
|
|
|
|
|
−0.05** |
0.64 |
Sodium |
|
|
|
|
|
0.002* |
0.29 |
Potassium |
−4.53* |
|
|
|
|
−0.40** |
0.59 |
Log urea |
|
|
|
−0.19* |
|
0.01* |
0.28 |
Creatinine |
|
−0.6* |
−0.16*** |
|
|
0.01* |
0.64 |
Triglycerides |
−0.34*** |
|
|
−0.34** |
|
|
0.54 |
Total protein | −0.35* | −0.04** | 0.45 |
Body condition was measured as chest circumference to body length ratio. The proportion of explained deviance (Deviance difference) in each model is shown. P values are shown: * p < 0.05, ** p < 0.01, ***p < 0.001.
Table 3.
N | Mean | SD | Range | Reference ranges | |
---|---|---|---|---|---|
Induction period (min) |
35 |
4.81 |
2.92 |
13.16 |
N.A. |
Hypnosis period (min) |
32 |
61.67 |
25.36 |
106.12 |
N.A. |
Recovery period (min) |
30 |
14.25 |
13.41 |
46.5 |
N.A. |
Initial respiratory rate (/min) |
35 |
61.74 |
40.52 |
132 |
32-58* |
40 min respiratory rate (/min) |
32 |
48.47 |
31.96 |
146 |
32-58* |
Initial heart rate (/min) |
35 |
114.94 |
27.75 |
116 |
70-120* |
40 min heart rate (/min) |
31 |
99.26 |
26.26 |
118 |
70-120* |
Initial body temperature (°C) |
35 |
40.27 |
1.52 |
5.5 |
38.70-39.80* |
40 min body temperature (°C) |
31 |
39.77 |
1.77 |
5.9 |
38.70-39.80* |
ALT (UI/L) |
35 |
64.91 |
28.18 |
129 |
38-153.70 |
ALP (UI/L) |
35 |
111.15 |
57.70 |
244.5 |
45.60-122.50 |
CK (UI/L) |
35 |
11,675 |
36,788 |
216,811 |
918-3,106 |
AST (UI/L) |
35 |
260.09 |
442.42 |
2180 |
52.30-113.40 |
LDH (UI/L) |
35 |
2805.78 |
1159.14 |
4752.3 |
791-976 |
Lactate (mmol/L) |
35 |
13.44 |
5.28 |
27.1 |
22.05 |
Glucose (mmol/L) |
35 |
8.64 |
4.31 |
18.35 |
5.26-10.70 |
Cholesterol (mmol/L) |
35 |
2.78 |
0.67 |
2.53 |
2.08-3.95 |
Sodium (mmol/L) |
35 |
148.14 |
10.90 |
44.8 |
145.80-162.80 |
Potassium (mmol/L) |
35 |
11.93 |
5.27 |
23.61 |
5.50-15.20 |
Urea (mmol/L) |
35 |
4.95 |
1.46 |
6.79 |
2.40-5.25 |
Creatinine (μmol/L) |
35 |
128.68 |
41.21 |
140.55 |
118.46-216.50 |
Triglycerides (mmol/L) |
35 |
0.41 |
0.56 |
3.31 |
0.98-1.44 |
Total protein (g/L) | 35 | 78.50 | 11.05 | 47.5 | 68.10-82.10 |
Table 4.
TRAP TYPE | Cage-trap | Corral-trap | ||
---|---|---|---|---|
Hypnosis period (min) |
74.79 / 72.63 |
49.60 / 45.46 |
||
40 min heart rate (/min) |
84.89 / 92.86 |
96.71 / 103.54 |
||
Initial body temperature (°C) |
39.96 / 39.96 |
40.54 / 40.42 |
||
Lactate (mmol/L) |
11.60 / 11.59 |
15.15 / 15.24 |
||
Glucose (mmol/L) |
6.63 / 6.63 |
9.92 / 9.94 |
||
Potassium (mmol/L) |
9.22 / 9.22 |
13.37 / 13.63 |
||
Triglycerides (mmol/L) |
0.21 / 0.21 |
0.59 / 0.62 |
||
AGE CLASS |
Young |
Adult |
||
Recovery period (min) |
10.28 / 7.38 |
22.18 / 23.11 |
||
ALP (UI/L) |
134.91 / 126.04 |
74.68 / 64.76 |
||
GENDER |
Female |
Male |
||
AST (UI/L) |
251.83 / 153.66 |
279.44 / 186.33 |
||
TRAP TYPE |
Cage-trap |
Corral-trap |
||
AGE CLASS |
Young |
Adult |
Young |
Adult |
Induction period (min) |
3.33 / 2.82 |
4.11 / 4.51 |
4.29 / 4.74 |
9.87 / 7.36 |
GENDER |
Female |
Male |
||
AGE CLASS |
Young |
Adult |
Young |
Adult |
Creatinine (μmol/L) |
97.38 / 98.88 |
152.64 / 146.68 |
122.29 / 120.30 |
165.11 / 167.10 |
Total protein (g/L) | 70.85 / 70.95 | 79.20 / 78.70 | 79.48 / 79.31 | 87n23 / 87.40 |
Heart rate after 40 minutes and initial rectal temperature were significantly higher in the wild boar captured in corral traps, as well as serum lactate, glucose, potassium, and triglyceride concentrations, whereas HP was significantly higher in wild boar captured in cage traps. Serum AST activity was significantly higher in females than in males. Young wild boar had significantly shorter RP and higher serum ALP activity than adults. IP was significantly longer in the corral-trap captured and adult wild boar than in the cage-trap captured and young ones, respectively. Serum creatinine and total protein concentrations were significantly lower in the female and young wild boar as compared to males and adults (Tables 2, 3 and 4). Higher dosages increased RP and initial respiratory rate, and were negatively correlated with serum enzymatic activity (ALT, ALP, CK, AST, and LDH) and serum lactate, urea and triglycerides concentration. The wild boar with better body condition experienced a shorter IP, and had lower initial respiratory rate, heart rate at 40 minutes, and serum glucose concentration, but showed higher serum CK and LDH activities than the wild boar in lower body condition. Finally, higher environmental temperatures increased IP and initial body temperature, as well as serum sodium, urea, and creatinine concentrations, and decreased serum cholesterol and potassium concentrations (Table 2).
The post-capture activity monitoring of 14 GPS collared wild boar evidenced no mortality for the first 20 days. In fact, no reduction of activity patterns recorded in terms of average speed was observed in the first 10 hours post-capture (262 ± 115 m/h) compared with the same period in the consecutive 3 days (265 ± 144 m/h), according to Mann–Whitney U test (U = 27.5, p > 0.05).
Discussion
Capture method
Both capture methods, the cage-trap and the corral-trap, were effective and provided good average yield. The higher yield in corral-traps than in cage-traps agrees with previous reports [17]. Nevertheless, the average yield for cage-traps was also higher than one wild boar per capture. There was a high variability among locations, probably due to marked differences in local wild boar abundance, which has been reported to influence capture yield [17].
Mortality fell within the previously reported 1.6%-10.6% range for this species [14,17], and was mostly caused by trauma in corral-traps (4 out of 5 mortality cases recorded). Trauma is a documented cause of mortality when capturing wild boar with corral traps [17,19]. Therefore, cage traps are considered to be safer than corral traps. Hyperthermia is a well-known cause of stress-related mortality in wild ungulates and particularly in wild boar, which are especially prone to hyperthermia when exposed to high environmental temperatures [7,15,46]. Moreover, an increase of activity before immobilization can lead to the production of heat in the muscle and severe elevation of body temperature [47].
Although only operator-activated methods are considered truly selective [48,49], species-specificity for the capture methods used in this study was high (96.3%), likely due to the use of camera traps, which allowed activating the traps once they were regularly visited by wild boar. Blind activation of the traps would produce earlier captures of wild boar, increasing efficiency, but would decrease specificity in turn. Concerning the age-selectivity of the study method, a greater proportion of young wild boar was captured in corral traps, due to the higher rate of capture of family groups (adult female with progeny), as previously reported [11,19].
Anaesthesia
The anaesthetic protocol used (2.9 mg/kg of TZ and 0.05 mg/kg of M) had a high anaesthetic efficiency (97.6%), higher than the previously reported 55% - 78% range obtained with other anaesthetic protocols used in wild boar [14,15,17,41]. Moreover, it allowed the use of low volumes of drug, which has economic and practical interest as makes the protocol suitable for teleanaesthesia [50].
Anaesthetic induction was quick (4.5 minutes), shorter than the previously reported 5–10 minutes for a combination of 5 mg/kg of TZ and 0.025 mg/kg of M [29] or the 5 minutes reported for a combination of 3.2 mg/kg of TZ and 1.6 mg/kg of X [41], both in feral hogs, but slightly longer than the 3.3 minutes reported in wild boar with a higher dose (used for prolonged surgical procedures) of 5 mg/kg of TZ and 0.1 mg/kg of M [20]. The period of hypnosis allows the safe handling of animals, an appropriate duration of this period is required and varies depending on the specific procedures to perform. The mean HP (61.6 min) was longer than the period of 52 minutes obtained using TZ and X [41], or the 37.6 minutes reported for TZ alone [14]. Anaesthetic recovery is critical in wild boar [13,14,28,51]. For instance, it may be extended by residual activity when using ketamine [13,28] or TZ [14] alone. The addition of M, an α2-adrenergic agonist (alternatively X or romifidine may be used) reduced the required TZ dose, providing an anaesthetic RP much shorter (12.8 minutes), than the 43 minutes reported for the aforementioned combination of 3.2 mg/kg of TZ and 1.6 mg/kg of X in feral pigs [41]. In addition, atipamezole (an α2-adrenergic antagonist) was effective reversing the anaesthetic effects of M [52]. Reversal of M anaesthesia by atipamezole might uncover residual cyclohexamine effects if the antagonist is administered too early or at tiletamine high dose [53]. However, no such side effects were observed in this study. Further studies are needed to properly assess the efficacy and safety of anaesthetic reversal in anaesthetized wild boar.
The decreasing trends observed in heart rate, respiratory rate, and body temperature have been previously reported in domestic pigs using TZ combined with M [54] or X [54-56]. The oxygen saturation values registered coincide with those previously reported in anaesthetized wild boar, feral pigs, and peccaries and are comparable to the 93.2% SpO2 considered indicator of good physiological condition during anaesthesia in these pig species [41,57,58]. Therefore, the anaesthetic protocol used seemed to be efficient and low risk.
Regarding activity patterns, no signs of movement restriction due to anaesthesia were evidenced during post-release monitoring. However, the risk of secondary narcosis in the first hours after handling could not be evaluated in practice due to the low activity of wild boar during daytime [59] and the time rate of fixing positions (1 hour).
Factors affecting anaesthesia
Anaesthetizing free-ranging wild animals is always a risk, since no preanaesthetic evaluation can be properly performed (even estimating the weight is challenging), and several factors, either external (like trap type, environmental temperature, preanaesthetic stress, dose) or internal (gender, age, body condition) modulate individual response [60]. All these factors were significant in the present study.
According to the best statistical model obtained, the main factor affecting anaesthetic efficacy and stress indicators is trap type. The higher IP, heart rate at 40 minutes, initial rectal temperature, and serum lactate, glucose, potassium, and triglyceride concentrations and the shorter HP shown by the wild boar captured with corral traps indicate that they are more stressful for the wild boar during the preanaesthetic period than cage-traps, decreasing anaesthetic efficiency and animal welfare. That agrees with the higher mortality due to trauma experienced in this type of trap, and was probably related to the physical exercise before capture, since both lactate and potassium increases through anaerobic metabolism due to physical exercise [61,62] and are indicators of capture myopathy [46]. Larger traps have already been reported to cause a higher stress and injuries in captured feral pigs [19]. Preanaesthetic stress is inversely related to the anaesthetic efficacy, requiring higher doses to achieve the same anaesthetic effect and causing dosage inefficacy [17,18,41]. We can not discard that the early darting of animal with blow pipe (HPI) before handling could influence itself animal reaction, but this was probably mediated by its association with the capture system, since it took more time, in average, darting animals in corral traps.
Age-related differences between young (<25 months) and adult (>25 months) wild boar in anaesthetic periods (IP and RP) and physiological variables (serum creatinine and total protein concentrations and ALP activity) are probably related to metabolic differences, since anaesthetic metabolism has been reported to be faster in young animals [63], therefore decreasing IP and RP. Regarding serum biochemistry, adults have higher serum protein concentration [64] and, since serum creatinine is directly related to muscular mass [65], also higher serum creatinine concentration than young animals, as previously reported in other wild ungulate species [66,67]. Higher ALP activities in young animals due to increased bone isoenzyme have been repeatedly reported in wild ungulates [68,69]. The higher serum creatinine and total protein concentrations and AST activity observed in the female wild boar as compared to males suggest a higher stress level in females. AST is a nonspecific but sensitive marker of soft tissue damage [69], whereas creatinine is directly related to muscular mass, and therefore it would be expected to be higher in males, but it may also increase due to renal vasoconstriction induced by catecholamines [65,70]. Higher creatinine levels in females, suggesting a higher adrenergic stress response in this gender, have been reported in other wild ungulate species [71]. Increases in AST and creatinine are related to myopathy and renal vasoconstriction, respectively, which are relevant in the pathogenesis of the four capture myopathy syndromes [46,72]. Nevertheless, and since other stress indicators, like body temperature and other serum enzymatic activities, did not indicate this possible higher stress in females, these results should be considered with caution.
The effects of increasing dosages (longer RP and higher initial respiratory rate, and lower serum enzymatic activity and serum lactate, urea, and triglyceride concentrations) suggest that the wild boar receiving a higher dose experienced less stress, although the longer RP could induce a more intense stress which would be undetected, since monitoring took place during HP. A longer RP with increasing doses has been reported both for wild boar and feral pigs [14,41]. The benefits (lower stress) and risks (longer RP) of higher doses should be counterbalanced for each situation when anaesthetizing wild boar in the field.
The effects of good body condition on anaesthetic variables (shorter IP and lower initial respiratory rate and heart rate at 40 minutes), as well as the lower serum glucose concentration, could be explained by a lower plane of body metabolism in wild boar with a higher percentage of body fat [73], as previously reported in feral pigs [41]. Higher serum CK and LDH activities in the wild boar in good body condition could correspond to their greater body size and amount of tissue releasing these enzymes.
Finally, the effects of high temperatures on both anaesthetic variables (longer IP and higher initial body temperature) and serum biochemistry (higher sodium, urea, and creatinine and lower cholesterol and potassium concentrations) indicate dehydration before anaesthesia, which could lead to heat stroke and to an increased risk of developing capture myopathy [46]. Wild boar are especially prone to hyperthermia when exposed to high environmental temperatures [7], and an increase of activity before immobilization can lead to the production of heat muscle and severe elevation of body temperature. Under these circumstances, immediately cooling the animal with cold water, alcohol or ice packs [47] is paramount to enhance welfare and decrease the probability of adverse anaesthetic consequences, thus, increasing survival rate.
Conclusion
Both, cage and corral traps are efficient methods to capture wild boar. Cage traps are safer, as demonstrated by mortality rates as well as anaesthetic, physiological, and serum biochemical responses. Nevertheless, mortality fell within the lower range of previously reported data and no additional mortality was registered during post-release monitoring. The anaesthetic combination used (2.9 mg/kg of TZ and 0.05 mg/kg of M) is efficient and safe to immobilize physically captured wild boar, and the addition of an α2-adrenergic agonist provides suitable analgesia, muscle relaxation and recovery. Trap type, preanaesthetic stress, anaesthetic dose, gender, age, body condition, and environmental temperature affected anaesthetic efficiency and animal welfare. All these factors must be taken into account when anaesthetizing free-ranging wild boar. In conclusion, this anaesthetic protocol is useful for prolonged handling of wild boar and allows sampling and collecting data for ecological and epidemiological studies.
Abbreviations
M: Medetomidine; X: Xilacine; TZ: Tiletamine-zolazepam; HPI: Human presence until injection; IP: Induction period; HP: Hypnosis period; RP: Recovery period; ALT: Serum alanine aminotransferase; AP: Alkaline phosphatise; AST: Aspartate aminotransferase; CK: Creatine kinase; LDH: Lactate dehydrogenase; GPS: Global position system; GSM: Global system for mobile communications; GLMz: Generalized linear models; SD: Standard deviation.
Competing interests
The authors declare that they have no competing interests.
Authors’ contributions
JAB and JV designed and carried out the study. JV and JRLO provided guidance on anaesthetic and statistical aspects of the study. JAB, BB and JV were involved in field work and data collection. JAB, JV, JRLO, BB and CG assisted in data interpretation and drafting the manuscript. All authors contributed to the critical revision of the manuscript for important intellectual content and have seen and approved the final draft.
Contributor Information
José Angel Barasona, Email: joseangel.barasona@uclm.es.
Jorge Ramón López-Olvera, Email: jordi.lopez.olvera@uab.cat.
Beatriz Beltrán-Beck, Email: beatriz.beltran@uclm.es.
Christian Gortázar, Email: christian.gortazar@uclm.es.
Joaquín Vicente, Email: oaquin.vicente@uclm.es.
Acknowledgements
This study was funded by the research projects FAU2008-00004-C03-01 and AGL2010-20730-C02-01 (Spanish Ministry). We thank colleagues from IREC and colleagues from the Cabañeros National Park for their kind help. JA Barasona holds an FPU pre-doctoral scholarship funded by the Spanish Ministry of Education and Science. B Beltrán is financed by PhD studentship BES-2009-017401 of the Spanish Ministry of Economy and Competitiveness. We also thank Ursula Höfle for her valuable comments on the study.
References
- Broom D, Johnson K. Stress and animal welfare. London: Chapman and Hall; 1993. [Google Scholar]
- Dawkins MS. A user’s guide to animal welfare science. Trends Ecol Evol. 2006;21:77–82. doi: 10.1016/j.tree.2005.10.017. [DOI] [PubMed] [Google Scholar]
- Powell RA, Proulx G. Trapping and marking terrestrial mammals for research: integrating ethics, performance criteria, techniques, and common sense. ILAR J. 2003;44:259–276. doi: 10.1093/ilar.44.4.259. [DOI] [PubMed] [Google Scholar]
- Gordon IJ, Hester AJ, Festa-Bianchet M. Review: the management of wild large herbivores to meet economic, conservation and environmental objectives. J App Ecol. 2004;41:1021–1031. doi: 10.1111/j.0021-8901.2004.00985.x. [DOI] [Google Scholar]
- Sàez-Royuela C, Telleria JL. The increased population of wild boar (Sus scrofa) in Europa. Mamm Rev. 1986;16:97–101. doi: 10.1111/j.1365-2907.1986.tb00027.x. [DOI] [Google Scholar]
- Geisser H, Reyer HU. Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boar. J Wildl Manage. 2004;68:939–946. doi: 10.2193/0022-541X(2004)068[0939:EOHFAF]2.0.CO;2. [DOI] [Google Scholar]
- Baber D, Coblentz B. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J Mammal. 1986;67:512–552. doi: 10.2307/1381283. [DOI] [Google Scholar]
- Naranjo V, Gortázar C, Vicente J, de la Fuente J. Evidence of the role of European wild boar as a reservoir of Mycobacterium tuberculosis complex. Vet Microbiol. 2008;127:1–9. doi: 10.1016/j.vetmic.2007.10.002. [DOI] [PubMed] [Google Scholar]
- Meng X, Lindsay D. Wild boar as sources for infectious diseases in livestock and humans. Phil Trans R Soc B. 2009;364:2697–2707. doi: 10.1098/rstb.2009.0086. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jullien JM. In: Proceedings of the Symposium on Techniques de capture et de marquage des ongulés sauvages: 20-22 March 1990; Meze-Hérault. Dubray D, editor. Montpellier: FDC; 1990. Sélectivité de cinq modes de piégeage pour lê Sanglier; pp. 95–101. [Google Scholar]
- Vassant J, Brandt S. Adaptation du piégeage par enclos-piège de type corral pour la capture de compagnies de sangliers. Gibier Faune Sauvage. 1995;12:51–61. [Google Scholar]
- Hebeisen C, Fattebert J, Baubet E, Fischer C. Estimating wild boar (Sus scrofa) abundance and density using capture-resights in Canton of Geneva, Switzerland. Eur J Wildl Res. 2008;54:391–401. doi: 10.1007/s10344-007-0156-5. [DOI] [Google Scholar]
- Gallagher JF, Lochmiller RL, Grant WE. Immobilization of collared peccaries with ketamine hydrochloride. J Wildl Manage. 1985;49(2):356–357. doi: 10.2307/3801530. [DOI] [Google Scholar]
- Fournier P, Fournier-Chambrillon C, Maillard D, Klein F. Zoletil immobilization of wild boar (Sus scrofa L.) J Mt Ecol. 1995;3:134–136. [Google Scholar]
- Gabor T, Hellgren E, Silvy N. Immobilization of collared peccaries (Tayassu tajacu) and feral hogs (Sus scrofa) with Telazol and Xylazine. J Wildl Dis. 1997;33(1):161–164. doi: 10.7589/0090-3558-33.1.161. [DOI] [PubMed] [Google Scholar]
- Sutherland-Smith M, Campos JM, Cramer C, Thorsdtadt C, Toone W, Morris PJ. Immobilization of Chacoan peccaries (Catagonus wagneri) using medetomidine, telazol®, and ketamine. J Wildl Dis. 2004;40(4):731–736. doi: 10.7589/0090-3558-40.4.731. [DOI] [PubMed] [Google Scholar]
- Fenati M, Monaco A, Guberti V. Efficiency and safety of xylazine and tiletamine/zolazepam to immobilize captured wild boar (Sus scrofa L. 1758): analysis of field results. Eur J Wildl Res. 2008;54(2):269–274. doi: 10.1007/s10344-007-0140-0. [DOI] [Google Scholar]
- Nielsen L. In: Lumb and Jone’s veterinary anesthesia. 3. Thurmon JC, Tranquilli WJ, Benson GJ, editor. Baltimore, MD: Williams and Wilkins; 1996. Chemical immobilization of free-ranging terrestrial mammals; pp. 736–764. [Google Scholar]
- Sweitzer R, Gonzales B, Gardner I, Vuren D, Wauthman J, Boyce W. A modified panel trap and immobilization technique for capturing multiple wild pigs. Wildl Soc Bull. 1997;25(3):699–705. [Google Scholar]
- Enqvist K. In: Proceedings of the Annual Conference-American Association of Zoo Veterinarians: 17-21 September 2000; New Orleans, Louisiana. American Association of Zoo Veterinarians, editor. American Association of Zoo Veterinarians Annual Proceedings; 2000. Medetomidine /Tiletamine-Zolazepam and Medetomidine /Butorphanol/Tiletamine-Zolazepam: a comparison of two anesthetic regimens for surgical implantation of intraperitoneal radiotransmitters in free ranging juvenile European wild boar (Sus scrofa scrofa) pp. 303–306. [Google Scholar]
- Burroughs R, Morkel P, Kock MD, Meltzer D, Hofmeyr M. In: Chemical and physical restraint of wild animals. Kock MD, Meltzer D, Burroughs R, editor. Greyton, South Africa: Veterinary Association Wildlife Group and International Wildlife Veterinary Services; 2006. Chemical immobilization – individual species requirements; pp. 116–211. [Google Scholar]
- Lin HC, Thurmon JC, Benson GJ, Tranquilli WJ. Telazol: a review of its pharmacology and use in veterinary medicine. J Vet Pharmacol Ther. 1993;16(4):383–418. doi: 10.1111/j.1365-2885.1993.tb00206.x. [DOI] [PubMed] [Google Scholar]
- Lin HC. In: Lumb & Jones’Veterinary Anesthesia. Thurmon JC, William JT, Benson GJ, editor. Baltimore: Williams & Wikins; 1996. Dissociative anesthetics. [Google Scholar]
- Tranquilli W, Maze M. Clinical pharmacology and use of α-2 adrenergic agonist in veterinary anesthesia. Anesth Pharmacol Rev. 1993;1:297–309. [Google Scholar]
- Charney DS, Mihic SJ, Harris RA. In: Goodman & Gilman’s Pharmacological Basis of Therapeutics. 10. Hardman JG, Limbird LE, editor. New York: McGraw-Hill; 2001. Hypnotics and sedatives; p. 399. [Google Scholar]
- Maze M, Tranquilli W. Alpha-2 adrenoceptor agonists: defining the rol in clinical anesthesia. Anethesiology. 2001;74:581–605. [PubMed] [Google Scholar]
- Lundy J. Balanced anesthesia. Minn Med. 1926;9:933. [Google Scholar]
- Hellgren EC, Lochmiller RL, Amoss MS Jr, Grant WE. Endocrine and metabolic responses of the collared peccary (Tayassu tajacu) to immobilization with ketamine hydrochloride. J Wildl Dis. 1985;21(4):417–425. doi: 10.7589/0090-3558-21.4.417. [DOI] [PubMed] [Google Scholar]
- Tast A, Halli O, Peltronieri OA. A pratical method for nonsurgically inserting intra-arterial catheters in European Wild Boar (Sus scrofa) Vet Res Commun. 2000;24(1):25–30. doi: 10.1023/A:1006321204331. [DOI] [PubMed] [Google Scholar]
- Wolkers J, Wensing T, Groot Bruinderink GW, Schonewille AT. Nutritional status of wild boar (Sus scrofa): II. Body fat reserves in relation to haematology and blood chemistry. Comp Biochem Physiol A Physiol. 1993;105:539–542. doi: 10.1016/0300-9629(93)90431-3. [DOI] [PubMed] [Google Scholar]
- Wolkers J, Wensing T, Groot Bruinderink GW, Schonewille JT. Lungworm and stomach worm infection in relation to body fat reserves and blood composition in wild boar (Sus scrofa) Vet Q. 1994;16:193–195. doi: 10.1080/01652176.1994.9694446. [DOI] [PubMed] [Google Scholar]
- Wolkers J, Wensing T, Groot Bruinderink GW, Schonewille JT. The effect of undernutrition on haematological and serum biochemical variables in wild boar (Sus scrofa) Comp Biochem Physiol A Physiol. 1994;108:431–437. doi: 10.1016/0300-9629(94)90115-5. [DOI] [PubMed] [Google Scholar]
- López-Olvera JR, Höfle U, Vicente J, Fernández-de-Mera IG, Gortázar C. Effect of parasitic helminths and ivermectin treatment on clinical parameters in the European wild boar (Sus scrofa) Parasitol Res. 2006;98:582–587. doi: 10.1007/s00436-005-0099-2. [DOI] [PubMed] [Google Scholar]
- Wolkers J, Wensing T, Groot Bruinderink GW. Sedation of wild boar (Sus scrofa) and red deer (Cervus elaphus) with medetomidine and the influence on some haematological and serum biochemical variables. Vet Q. 1994;16:7–9. doi: 10.1080/01652176.1994.9694406. [DOI] [PubMed] [Google Scholar]
- Matschke G. Aging European wild hogs by dentition. J Wldl Manage. 1967;31:109–113. [Google Scholar]
- Baubet E, Brandt S, Jullien JM, Vassant J. Valeur de l’examen de la denture pour la determination de l’age chez le sanglier (Sus scrofa) Gibier Faune Sauvage. 1994;11:119–132. [Google Scholar]
- Carmona JM. Extracción de sangre en el seno oftálmico del cerdo. [ http://www.ivis.org/advances/suis/A5508.0711.ES.pdf]
- Baubet E, Brandt S, Vassant J, Gendner JP, Klein F. Can wild boar be surveyed using GPS? Mem Natl Inst Polar Res, Spec Issue. 2004;58:188–195. [Google Scholar]
- Cano-Manuel J, Granados JE, Castillo A, Serrano E, Pérez JM, Soriguer RC, Fandos P, Travesí R. In: Biodiversidad y conservación de fauna y flora en ambientes mediterráneos. Sierra Nevada: Collares GPS-GSM Ntaasduse, Barea JM, Ballesteros E, Luzón JM, Moleón M, Tierno JM, editor. Granada: SGHG; 2007. Nuevas tecnologías aplicadas al seguimiento de ungulados silvestres en Sierra Nevada: Collares GPS-GSM; pp. 691–705. [Google Scholar]
- Schall R. Estimation in generalized linear models with random effects. Biometrika. 1991;78:719–727. doi: 10.1093/biomet/78.4.719. [DOI] [Google Scholar]
- Sweitzer R, Ghneim G, Gardner I, Vuren D, Gonzales B, Boyce W. Immobilization and physiological parameters associated with chemical restraint of wild pigs with Telazol and Xylazine Hydrochloride. J Wildl Dis. 1997;33(2):198–205. doi: 10.7589/0090-3558-33.2.198. [DOI] [PubMed] [Google Scholar]
- Shender LA, Botzler RG, George TL. Analysis of serum and whole blood values in relation to helminth and ectoparasite infections of feral pigs in Texas. J Wildl Dis. 2002;38:385–394. doi: 10.7589/0090-3558-38.2.385. [DOI] [PubMed] [Google Scholar]
- Harapain I, Bedrica L, Hahn V, Sostaric B, Gracner D. Haematological and biochemical values in blood of wild boar (Sus scrofa ferus) Veterinarski arhiv. 2003;73:333–343. [Google Scholar]
- Vidal D, Naranjo V, Mateo R, Gortazar C, de la Fuente J. Analysis of serum biochemical parameters in relation to Mycobacterium bovis infection of European wild boars (Sus scrofa) in Spain. Eur J Wildl Res. 2006;52:301–304. doi: 10.1007/s10344-006-0062-2. [DOI] [Google Scholar]
- Kahn CM, Line S, Allen DG. The Merck veterinary manual. Whitehouse Station, New Jersey: Merck & Co; 2005. [Google Scholar]
- Spraker TR. In: Chemical Immobilization of North American Wildlife. Nielsen L, Haigh JC, Fowler ME, editor. Milwaukee, USA: Wisconsin Humane Society; 1982. An overview of the pathophysiology of capture myopathy and related conditions that occur at the time of capture of wild animals; pp. 83–118. [Google Scholar]
- Moon P, Smith L. General anesthetic techniques in swine. Vet Clin North Am Food Anim Pract. 1996;12:663–691. doi: 10.1016/s0749-0720(15)30392-3. [DOI] [PubMed] [Google Scholar]
- Berducou C. In: Workshop on techniques de capture et de marquage des ongulés sauvage. Dubray D, editor. Montpellier: Office National de la Chasse et Ministère Chargé de l’Environnemen; 1993. Chamois et isards: bilan des captures par filets, pieges et engins drivers realisees en France au cours des trente dernieres annees (1958–1989) pp. 113–120. [Google Scholar]
- López-Olvera JR, Marco I, Montané J, Casas-Díaz E, Mentaberre G, Lavín S. Comparative evaluation of effort, capture and handling effects of drive nets to capture roe deer (Capreolus capreolus), Southern chamois (Rupicapra pyrenaica) and Spanish ibex (Capra pyrenaica) Eur J Wildl Res. 2009;55(3):193–202. doi: 10.1007/s10344-008-0232-5. [DOI] [Google Scholar]
- Cattet MR, Caulkett NA, Polischuk SC, Ramsay MA. Reversible immobilization of free-ranging polar bears with medetomidine-zolazepam-tiletamine and atipamezole. J Wildl Dis. 1997;33(3):611–617. doi: 10.7589/0090-3558-33.3.611. [DOI] [PubMed] [Google Scholar]
- Baber DW, Coblentz BE. Immobilization of feral pigs with a combination of ketamine and xylazine. J Wildl Manage. 1982;46(2):557–559. doi: 10.2307/3808682. [DOI] [Google Scholar]
- Ajadi AR, Olusa TA, Smith OF, Ajibola ES, Adeleye OE, Adenubi OT, Makinde FA. Tramadol improved the efficacy of ketamine–xylazine anaesthesia in young pigs. Vet Anaesth Analg. 2009;36(6):562–566. doi: 10.1111/j.1467-2995.2009.00496.x. [DOI] [PubMed] [Google Scholar]
- Jalanka HH, Roeken BO. The use of medetomidine, medetomidine-ketamine combinations, and atipamezole in nondomestic mammals: a review. J Zoo Wildl Med. 1990;21(3):259–282. [Google Scholar]
- Lee JY, Jee HC, Jeong SM, Park CS, Kim MC. Comparison of anaesthetic and cardiorespiratory effects of xylazine or medetomidine in combination with tiletamine/zolazepam in pigs. Vet Rec. 2010;167(7):245–249. doi: 10.1136/vr.c3611. [DOI] [PubMed] [Google Scholar]
- Thurmon J, Benson C, Tranquilli W, Olson W. The anesthetic and analgesic effects of Telazol and xylazine in pigs. evaluating clinical trials. Vet Med. 1988;83:841–845. [Google Scholar]
- Ko JC, Williams BL, Smith VL, McGrath CJ, Jacobson JD. Comparison of telazol, telazol-ketamine, telazol-xylazine, and telazol-ketamine-xvlazine as chemical restraint and anesthetic induction combination in swine. Lab Anim Sci. 1993;43(5):476–480. [PubMed] [Google Scholar]
- Allen JL. Immobilization of giant Chacoan peccaries (Catagonus wagneri) with a tiletamine hydrochloride/ zolazepam hydrochloride combination. J Wildl Dis. 1992;28(3):499–501. doi: 10.7589/0090-3558-28.3.499. [DOI] [PubMed] [Google Scholar]
- Siemon A, Wiesner H, von Hegel G, Hellabrunn MT. The use of tiletamine/zolazepam/romifidine for distant immobilization of wild boars. Tierarztl Prax. 1992;20:55–58. [PubMed] [Google Scholar]
- Boitani L, Mattei L, Nonis D, Corsi F. Spatial and activity patterns of wild boars in Tuscany, Italy. J Mammal. 1994;75(3):600–612. doi: 10.2307/1382507. [DOI] [Google Scholar]
- Fowler ME. Restraint and handling of wild and domestic animals. 2. Ames, USA: Iowa State University Press; 1995. [Google Scholar]
- Kaneko JJ. In: Clinical Biochemistry of Domestic Animals. 5. Kaneko JJ, Harvey JW, Bruss ML, editor. San Diego: Academic Press Inc; 1997. Carbohydrate metabolism and its diseases; pp. 45–81. [Google Scholar]
- DiBartola SP, de Morais Autrain H. In: Fluid Therapy in Small Animal Practice. 2. DiBartola SP, editor. Philadelphia: Saunders WB Company; 2000. Hypokalemia and hyperkalemia; pp. 83–107. [Google Scholar]
- Hall LW, Clarke KW, Trim CM. Veterinary Anaesthesia. 10. London, United Kingdom: W.B. Saunders; 2001. [Google Scholar]
- Kaneko JJ. In: Clinical Biochemistry of Domestic Animals. 5. Kaneko JJ, Harvey JW, Bruss ML, editor. San Diego: Academic Press Inc; 1997. Serum proteins and dysproteinemias; pp. 117–138. [Google Scholar]
- Finco DR. In: Clinical Biochemistry of Domestic Animals. 5. Kaneko JJ, Harvey JW, Bruss ML, editor. San Diego: Academic Press Inc; 1997. Kidney function; pp. 485–516. [Google Scholar]
- Kock MD, Jessup DA, Clark RK, Franti CE. Effects of capture on biological parameters in free-ranging bighorn sheep (Ovis canadensis): evaluation of dropnet, drive-net, chemical immobilization and the net-gun. J Wild Dis. 1987;23(4):641–651. doi: 10.7589/0090-3558-23.4.641. [DOI] [PubMed] [Google Scholar]
- López-Olvera JR, Marco I, Montané J, Lavín S. Haematological and serum biochemical values of southern chamois (Rupicapra pyrenaica) Vet Rec. 2006;158:479–484. doi: 10.1136/vr.158.14.479. [DOI] [PubMed] [Google Scholar]
- Kock MD, Clark RK, Franti CE, Jessup DA, Wehausen JD. Effects of capture on biological parameters in free-ranging bighorn sheep (Ovis canadiensis): evaluation of normal, stressed and mortality outcomes and documentation of postcapture survival. J Wild Dis. 1987;23(4):652–662. doi: 10.7589/0090-3558-23.4.652. [DOI] [PubMed] [Google Scholar]
- Kramer JW, Hoffmann WE. In: Clinical Biochemistry of Domestic Animals. 5. Kaneko JJ, Harvey JW, Bruss ML, editor. San Diego: Academic Press Inc; 1997. Clinical enzymology; pp. 303–325. [Google Scholar]
- Harthoorn AM. Physiology of capture myopathy. Quinquennial report. Pretoria: Transvaal Nature Conservation Division; 1976. [Google Scholar]
- López-Olvera JR, Marco I, Montané J, Casas-Díaz E, Lavín S. Effects of acepromazine on the stress response in Southern chamois (Rupicapra pyrenaica) captured by means of drive-nets. Can J Vet Research. 2007;71:41–51. [PMC free article] [PubMed] [Google Scholar]
- Williams ES, Thorne T. In: Noninfectious diseases of wildlife. 2. Fairbrother A, Nocke LN, Hoff GL, editor. Ames: Iowa State University Press; 1996. Exertional myopathy (capture myopathy) pp. 181–193. [Google Scholar]
- Lumb W, Jones E. Veterinary anesthesia. Pennsylvania: Lea and Febiger; 1996. [Google Scholar]