Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Dec;52(6):651–654. doi: 10.1104/pp.52.6.651

The Biosynthesis of (+)-Tartaric Acid in Pelargonium crispum1

George Wagner a, F Loewus a
PMCID: PMC366564  PMID: 16658623

Abstract

Metabolic conversion of l-galactono-1, 4-lactone and l-ascorbic acid to (+)-tartaric acid and oxalic acid has been studied in Pelargonium crispum, cv. Prince Rupert. Experiments with specifically labeled substrates suggest a path of conversion involving cleavage of l-ascorbic acid, or a metabolic product of l-ascorbic acid, between C2 and C3, such that oxalic acid arises from the two carbon fragment and (+)-tartaric acid from the four carbon fragment.

Full text

PDF
651

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINS G. L., DEAN B. M., GRIFFIN W. J., WATTS R. W. QUANTITATIVE ASPECTS OF ASCORBIC ACID METABOLISM IN MAN. J Biol Chem. 1964 Sep;239:2975–2980. [PubMed] [Google Scholar]
  2. BURNS J. J., BURCH H. B., KING C. G. The metabolism of 1-C14-L-ascorbic acid in guinea pigs. J Biol Chem. 1951 Aug;191(2):501–514. [PubMed] [Google Scholar]
  3. BURNS J. J., DAYTON P. G., SCHULENBERG S. Further observations on the metabolism of L-ascorbic acid in guinea pigs. J Biol Chem. 1956 Jan;218(1):15–21. [PubMed] [Google Scholar]
  4. Baig M. M., Kelly S., Loewus F. L-ascorbic acid biosynthesis in higher plants from L-gulono-1, 4-lactone and L-galactono-1, 4-lactone. Plant Physiol. 1970 Aug;46(2):277–280. doi: 10.1104/pp.46.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. CHAN P. C., BECKER R. R., KING C. G. Metabolic products of L-ascorbic acid. J Biol Chem. 1958 Mar;231(1):231–240. [PubMed] [Google Scholar]
  6. CURTIN C. O., KING C. G. The metabolism of ascorbic acid-1-C14 and oxalic acid-C14 in the rat. J Biol Chem. 1955 Oct;216(2):539–548. [PubMed] [Google Scholar]
  7. DAYTON P. G., EISENBERG F., Jr, BURNS J. J. Metabolism of C14-labeled ascorbic, dehydroascorbic and diketoglulonic acids in guinea pigs. Arch Biochem Biophys. 1959 Mar;81(1):111–118. doi: 10.1016/0003-9861(59)90180-8. [DOI] [PubMed] [Google Scholar]
  8. Dayton P. G., Snell M. M., Perel J. M. Ascorbic and dehydroascorbic acids in guinea pigs and rats. J Nutr. 1966 Mar;88(3):338–344. doi: 10.1093/jn/88.3.338. [DOI] [PubMed] [Google Scholar]
  9. Dickinson D. B. Rapid starch synthesis associated with increased respiration in germinating lily pollen. Plant Physiol. 1968 Jan;43(1):1–8. doi: 10.1104/pp.43.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. FINKLE B. J., KELLY S., LOEWUS F. A. Metabolism of d-[I-14C]- and d-[6-14C] glucuronolactone by the ripening strawberry. Biochim Biophys Acta. 1960 Feb 26;38:332–339. doi: 10.1016/0006-3002(60)91249-x. [DOI] [PubMed] [Google Scholar]
  11. HELLMAN L., BURNS J. J. Metabolism of L-ascorbic acid-1-C14 in man. J Biol Chem. 1958 Feb;230(2):923–930. [PubMed] [Google Scholar]
  12. Hardy P. J. Metabolism of sugars and organic acids in immature grape berries. Plant Physiol. 1968 Feb;43(2):224–228. doi: 10.1104/pp.43.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JACKSON G. A., WOOD R. B., PROSSER M. V. Conversion of L-galactono-gamma-lactone into L-ascorbic acid by plants. Nature. 1961 Jul 15;191:282–283. doi: 10.1038/191282a0. [DOI] [PubMed] [Google Scholar]
  14. JANG R., LOEWUS F. A., SEEGMILLER C. G. The conversion of C14-labeled sugars to L-ascorbic acid in ripening strawberries. J Biol Chem. 1956 Oct;222(2):649–664. [PubMed] [Google Scholar]
  15. Kliewer W. M. Influence of Environment on Metabolism of Organic Acids and Carbohydrates in Vitis Vinifera. I. Temperature. Plant Physiol. 1964 Nov;39(6):869–880. doi: 10.1104/pp.39.6.869. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LOEWUS F. A., TCHEN T. T., VENNESLAND B. The enzymatic transfer of hydrogen. III. The reaction catalyzed by malic dehydrogenase. J Biol Chem. 1955 Feb;212(2):787–800. [PubMed] [Google Scholar]
  17. Loewus F. A., Stafford H. A. Observations on the Incorporation of C into Tartaric Acid and the Labeling Pattern of D-Glucose from an Excised Grape Leaf Administered L-Ascorbic Acid-6-C. Plant Physiol. 1958 Mar;33(2):155–156. doi: 10.1104/pp.33.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SEEGMILLER C. G., JANG R., MANN W., Jr Conversion of radioactive hexoses to pectin in the strawberry. Arch Biochem Biophys. 1956 Apr;61(2):422–430. doi: 10.1016/0003-9861(56)90365-4. [DOI] [PubMed] [Google Scholar]
  19. Stafford H. A., Loewus F. A. The Fixation of CO(2) into Tartaric and Malic Acids of Excised Grape Leaves. Plant Physiol. 1958 May;33(3):194–199. doi: 10.1104/pp.33.3.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Vaughn R. H., Marsh G. L., Stadtman T. C., Cantino B. C. Decomposition of Tartrates by the Coliform Bacteria. J Bacteriol. 1946 Sep;52(3):311–325. [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES