Abstract
Ethylene has been generally credited with promoting the abscission of the oldest leaves on a plant first. Vegetative cotton (Gossypium hirsutum L.) seedlings are an exception to this generalization. Under some conditions the younger, apical, unexpanded, or partially expanded leaves abscise before the less young, basal leaves or cotyledons. The degree or extent of apical leaf abscission increases with ethylene concentration and with plant age from 2 to 5 weeks. The response is promoted by auxin transport inhibitors. Usually the leaves which abscise first are those which have just unfolded and ones apical to the opened but unexpanded leaves. With plants with eight or nine leaves and macroscopic leaf buds, after the initial loss of unexpanded leaves, abscission tends to progress downward from the youngest remaining leaves and upward from the oldest leaves. The findings indicate that some characteristic(s) of apical leaves increases their sensitivity to ethylene. The characteristic may be differences in the abscission process between expanded and unexpanded leaves or differences in the hormone complement of the different leaves. Work is under way to modify this young leaf abscission response in an effort to determine its cause.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abeles F. B. Abscission: role of cellulase. Plant Physiol. 1969 Mar;44(3):447–452. doi: 10.1104/pp.44.3.447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B., Craker L. E., Leather G. R. Abscission: the phytogerontological effects of ethylene. Plant Physiol. 1971 Jan;47(1):7–9. doi: 10.1104/pp.47.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Abeles F. B., Rubinstein B. Regulation of Ethylene Evolution and Leaf Abscission by Auxin. Plant Physiol. 1964 Nov;39(6):963–969. doi: 10.1104/pp.39.6.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E. M. Auxin transport: a new synthetic inhibitor. Plant Physiol. 1972 Sep;50(3):322–327. doi: 10.1104/pp.50.3.322. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beyer E. M., Morgan P. W. Abscission: the role of ethylene modification of auxin transport. Plant Physiol. 1971 Aug;48(2):208–212. doi: 10.1104/pp.48.2.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burg S. P. Ethylene, plant senescence and abscission. Plant Physiol. 1968 Sep;43(9 Pt B):1503–1511. [PMC free article] [PubMed] [Google Scholar]
- Jackson M. B., Osborne D. J. Ethylene, the natural regulator of leaf abscission. Nature. 1970 Mar 14;225(5237):1019–1022. doi: 10.1038/2251019a0. [DOI] [PubMed] [Google Scholar]
- Lipe J. A., Morgan P. W. Ethylene, a regulator of young fruit abscission. Plant Physiol. 1973 May;51(5):949–953. doi: 10.1104/pp.51.5.949. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipe J. A., Morgan P. W. Ethylene: Response of Fruit Dehiscence to CO(2) and Reduced Pressure. Plant Physiol. 1972 Dec;50(6):765–768. doi: 10.1104/pp.50.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W., Durham J. I. Abscission: potentiating action of auxin transport inhibitors. Plant Physiol. 1972 Sep;50(3):313–318. doi: 10.1104/pp.50.3.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morgan P. W. Stimulation of ethylene evolution and abscission in cotton by 2-chloroethanephosphonic Acid. Plant Physiol. 1969 Mar;44(3):337–341. doi: 10.1104/pp.44.3.337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubinstein B., Leopold A. C. Analysis of the Auxin Control of Bean Leaf Abscission. Plant Physiol. 1963 May;38(3):262–267. doi: 10.1104/pp.38.3.262. [DOI] [PMC free article] [PubMed] [Google Scholar]