Abstract
The metabolic fate of l-ascorbic acid-1-14C and -6-14C has been investigated in two species in two genera of Vitaceae. Results suggest that ascorbic acid metabolism in the Vitaceae involves splitting the 6-carbon chain into 4- and 2-carbon fragments. The former, corresponding to C1 through C4 of ascorbic acid, is further oxidized to tartaric acid while the latter, corresponding to C5 and C6, is recycled into hexose phosphate metabolism. Comparison of these findings with previous observations on the conversion of ascorbic acid to (+)-tartaric acid in Pelargonium crispum clearly reveals two distinct processes of tartaric acid biosynthesis in those plants identified as tartaric acid accumulators.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- LOEWUS F. A., FINKLE B. J., JANG R. L'ascorbic acid; a possible intermediate in carbohydrate metabolism in plants. Biochim Biophys Acta. 1958 Dec;30(3):629–635. doi: 10.1016/0006-3002(58)90111-2. [DOI] [PubMed] [Google Scholar]
- Loewus F. A., Stafford H. A. Observations on the Incorporation of C into Tartaric Acid and the Labeling Pattern of D-Glucose from an Excised Grape Leaf Administered L-Ascorbic Acid-6-C. Plant Physiol. 1958 Mar;33(2):155–156. doi: 10.1104/pp.33.2.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stafford H. A., Loewus F. A. The Fixation of CO(2) into Tartaric and Malic Acids of Excised Grape Leaves. Plant Physiol. 1958 May;33(3):194–199. doi: 10.1104/pp.33.3.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
- Wagner G., Loewus F. The Biosynthesis of (+)-Tartaric Acid in Pelargonium crispum. Plant Physiol. 1973 Dec;52(6):651–654. doi: 10.1104/pp.52.6.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
