Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Nov;54(5):791–793. doi: 10.1104/pp.54.5.791

Microenvironmental Manipulation of the Observed Michaelis Constant of Ribulose Diphosphate Carboxylase 1

Louise E Anderson a
PMCID: PMC366605  PMID: 16658974

Abstract

Urease and ribulose 1, 5-diphosphate carboxylase can be bound to Sepharose to give an immobilized two-enzyme system which catalyzes the reaction urea → H2CO3 → phosphoglyceric acid. The observed Km of the system for urea approaches the lower value for urease when carboxylase levels on the gel exceed urease levels. If a similar system operates in the chloroplast, the high Km (H2CO3) of ribulose 1,5-diphosphate carboxylase may not be metabolically significant.

Full text

PDF
791

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson L. E., Fuller R. C. Photosynthesis in Rhodospirillum rubrum. IV. Isolation and characterization of ribulose 1,5-diphosphate carboxylase. J Biol Chem. 1969 Jun 25;244(12):3105–3109. [PubMed] [Google Scholar]
  2. Bahr J. T., Jensen R. G. Ribulose Diphosphate Carboxylase from Freshly Ruptured Spinach Chloroplasts Having an in Vivo Km[CO(2)]. Plant Physiol. 1974 Jan;53(1):39–44. doi: 10.1104/pp.53.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cooper T. G., Filmer D. The active species of "CO2" utilized by ribulose diphosphate carboxylase. J Biol Chem. 1969 Feb 10;244(3):1081–1083. [PubMed] [Google Scholar]
  4. Gestrelius S., Mattiasson B., Mosbach K. On the regulation of the activity of immobilized enzymes. Microenvironmental effects of enzyme-generated pH changes. Eur J Biochem. 1973 Jul 2;36(1):89–96. doi: 10.1111/j.1432-1033.1973.tb02888.x. [DOI] [PubMed] [Google Scholar]
  5. Hamilton B. K., Stockmeyer L. J., Colton C. K. Comments on diffusive and electrostatic effects with immobilized enzymes. J Theor Biol. 1973 Oct;41(3):547–560. doi: 10.1016/0022-5193(73)90061-1. [DOI] [PubMed] [Google Scholar]
  6. Hanson K. R., Ling R., Havir E. A computer program for fitting data to the Michaelis-Menten equation. Biochem Biophys Res Commun. 1967 Oct 26;29(2):194–197. doi: 10.1016/0006-291x(67)90586-4. [DOI] [PubMed] [Google Scholar]
  7. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Paulsen J. M., Lane M. D. Spinach ribulose diphosphate carboxylase. I. Purification and properties of the enzyme. Biochemistry. 1966 Jul;5(7):2350–2357. doi: 10.1021/bi00871a025. [DOI] [PubMed] [Google Scholar]
  9. Srere P. A., Mattiasson B., Mosbach K. An immobilized three-enzyme system: a model for microenvironmental compartmentation in mitochondria. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2534–2538. doi: 10.1073/pnas.70.9.2534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sundaram P. V. The kinetic properties of microencapsulated urease. Biochim Biophys Acta. 1973 Sep 15;321(1):319–328. doi: 10.1016/0005-2744(73)90086-7. [DOI] [PubMed] [Google Scholar]
  11. Werdan K., Heldt H. W. Accumulation of bicarbonate in intact chloroplasts following a pH gradient. Biochim Biophys Acta. 1972 Dec 14;283(3):430–441. doi: 10.1016/0005-2728(72)90260-5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES