Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1985 May;5(5):923–929. doi: 10.1128/mcb.5.5.923

Membrane mutants of animal cells: rapid identification of those with a primary defect in glycosylation.

P Stanley
PMCID: PMC366806  PMID: 4000122

Abstract

Membrane mutants of animal cells have been isolated by several laboratories, using a variety of selection protocols. The majority are lectin receptor mutants arising from altered glycosylation of membrane molecules. They have been obtained by selection for resistance to cytotoxic plant lectins or by alternative protocols designed, in many cases, to isolate different classes of receptor mutants. The identification of most membrane mutants expressing altered surface carbohydrates is rapidly achieved by determining their resistance to several lectins of different carbohydrate-binding specificities. For Chinese hamster ovary mutants, genetic novelty may subsequently be determined by complementation analysis with selected members of 10 recessive, glycosylation-defective complementation groups defined by this laboratory. In an attempt to identify new complementation groups, 11 Chinese hamster ovary membrane mutants independently isolated in different laboratories have been investigated for their lectin resistance and complementation properties. Only one new complementation group was defined by these studies. The remaining 10 mutants fell into complementation group 1, 2, 3, or 8. Although no evidence for intragenic complementation was observed, indirect evidence for different mutations within some genes was obtained. Seven of the independent isolates fell into complementation group 1, reflecting the high probability of isolating the Lec1 phenotype from Chinese hamster ovary populations. The results emphasize the importance of performing a genetic analysis before biochemical characterization of putative new membrane mutants.

Full text

PDF
923

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Briles E. B. Lectin-resistant cell surface variants of eukaryotic cells. Int Rev Cytol. 1982;75:101–165. doi: 10.1016/s0074-7696(08)61003-7. [DOI] [PubMed] [Google Scholar]
  2. Briles E. B., Li E., Kornfeld S. Isolation of wheat germ agglutinin-resistant clones of Chinese hamster ovary cells deficient in membrane sialic acid and galactose. J Biol Chem. 1977 Feb 10;252(3):1107–1116. [PubMed] [Google Scholar]
  3. Chapman A., Fujimoto K., Kornfeld S. The primary glycosylation defect in class E Thy-1-negative mutant mouse lymphoma cells is an inability to synthesize dolichol-P-mannose. J Biol Chem. 1980 May 25;255(10):4441–4446. [PubMed] [Google Scholar]
  4. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  5. Criscuolo B. A., Krag S. S. Selection of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosaminyltransferase activity. J Cell Biol. 1982 Sep;94(3):586–591. doi: 10.1083/jcb.94.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Deutscher S. L., Nuwayhid N., Stanley P., Briles E. I., Hirschberg C. B. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell. 1984 Dec;39(2 Pt 1):295–299. doi: 10.1016/0092-8674(84)90007-2. [DOI] [PubMed] [Google Scholar]
  7. Francke U., Lalley P. A., Moss W., Ivy J., Minna J. D. Gene mapping in Mus musculus by interspecific cell hybridization: assignment of the genes for tripeptidase-1 to chromosome 10, dipeptidase-2 to chromosome 18, acid phosphatase-1 to chromosome 12, and adenylate kinase-1 to chromosome 2. Cytogenet Cell Genet. 1977;19(2-3):57–84. doi: 10.1159/000130799. [DOI] [PubMed] [Google Scholar]
  8. Gottlieb C., Skinner A. M., Kornfeld S. Isolation of a clone of Chinese hamster ovary cells deficient in plant lectin-binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1078–1082. doi: 10.1073/pnas.71.4.1078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hirschberg C. B., Baker R. M., Perez M., Spencer L. A., Watson D. Selection of mutant Chinese hamster ovary cells altered glycoproteins by means of tritiated fucose suicide. Mol Cell Biol. 1981 Oct;1(10):902–909. doi: 10.1128/mcb.1.10.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hirschberg C. B., Perez M., Snider M., Hanneman W. L., Esko J., Raetz C. R. Autoradiographic detection and characterization of a Chinese hamster ovary cell mutant deficient in fucoproteins. J Cell Physiol. 1982 Jun;111(3):255–263. doi: 10.1002/jcp.1041110306. [DOI] [PubMed] [Google Scholar]
  11. Hyman R. Studies on surface antigen variants. Isolation of two complementary variants for Thy 1.2. J Natl Cancer Inst. 1973 Feb;50(2):415–422. doi: 10.1093/jnci/50.2.415. [DOI] [PubMed] [Google Scholar]
  12. Jones C. Increased cytotoxicity of normal rabbit serum for lectin-resistant mutants of animal cells. J Exp Med. 1984 Oct 1;160(4):1241–1246. doi: 10.1084/jem.160.4.1241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kingsley D. M., Krieger M. Receptor-mediated endocytosis of low density lipoprotein: somatic cell mutants define multiple genes required for expression of surface-receptor activity. Proc Natl Acad Sci U S A. 1984 Sep;81(17):5454–5458. doi: 10.1073/pnas.81.17.5454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Krieger M., Brown M. S., Goldstein J. L. Isolation of Chinese hamster cell mutants defective in the receptor-mediated endocytosis of low density lipoprotein. J Mol Biol. 1981 Aug 5;150(2):167–184. doi: 10.1016/0022-2836(81)90447-2. [DOI] [PubMed] [Google Scholar]
  15. Kuwano M., Tabuki T., Akiyama S., Mifune K., Takatsuki A., Tamura G., Ikehara Y. Isolation and characterization of Chinese hamster ovary cell mutants with altered sensitivity to high doses of tunicamycin. Somatic Cell Genet. 1981 Sep;7(5):507–521. doi: 10.1007/BF01549655. [DOI] [PubMed] [Google Scholar]
  16. Li I. C., Blake D. A., Goldstein I. J., Chu E. H. Modification of cell membrane in variants of Chinese hamster cells resistant to abrin. Exp Cell Res. 1980 Oct;129(2):351–360. doi: 10.1016/0014-4827(80)90503-0. [DOI] [PubMed] [Google Scholar]
  17. Ono M., Kuwano M., Watanabe K., Funatsu G. Chinese hamster cell variants resistant to the A chain of ricin carry altered ribosome function. Mol Cell Biol. 1982 Jun;2(6):599–606. doi: 10.1128/mcb.2.6.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ray B., Wu H. C. Chinese hamster ovary cell mutants defective in the internalization of ricin. Mol Cell Biol. 1982 May;2(5):535–544. doi: 10.1128/mcb.2.5.535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Robbins A. R., Myerowitz R., Youle R. J., Murray G. J., Neville D. M., Jr The mannose 6-phosphate receptor of Chinese Hamster ovary cells. Isolation of mutants with altered receptors. J Biol Chem. 1981 Oct 25;256(20):10618–10622. [PubMed] [Google Scholar]
  20. Spiro R. G., Spiro M. J. Studies on the synthesis and processing of the asparagine-linked carbohydrate units of glycoproteins. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 24;300(1099):117–127. doi: 10.1098/rstb.1982.0160. [DOI] [PubMed] [Google Scholar]
  21. Stanley P., Caillibot V., Siminovitch L. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somatic Cell Genet. 1975 Jan;1(1):3–26. doi: 10.1007/BF01538729. [DOI] [PubMed] [Google Scholar]
  22. Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet. 1984;18:525–552. doi: 10.1146/annurev.ge.18.120184.002521. [DOI] [PubMed] [Google Scholar]
  23. Stanley P. Lectin-resistant CHO cells: selection of new mutant phenotypes. Somatic Cell Genet. 1983 Sep;9(5):593–608. doi: 10.1007/BF01574260. [DOI] [PubMed] [Google Scholar]
  24. Stanley P. Selection of lectin-resistant mutants of animal cells. Methods Enzymol. 1983;96:157–184. doi: 10.1016/s0076-6879(83)96015-9. [DOI] [PubMed] [Google Scholar]
  25. Stanley P. Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Mol Cell Biol. 1981 Aug;1(8):687–696. doi: 10.1128/mcb.1.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stanley P., Siminovitch L. Complementation between mutants of CHO cells resistant to a variety of plant lectins. Somatic Cell Genet. 1977 Jul;3(4):391–405. doi: 10.1007/BF01542968. [DOI] [PubMed] [Google Scholar]
  27. Stanley P., Siminovitch L. Selection and characterization of Chinese hamster ovary cells resistant to the cytotoxicity of lectins. In Vitro. 1976 Mar;12(3):208–215. doi: 10.1007/BF02796443. [DOI] [PubMed] [Google Scholar]
  28. Stanley P., Sudo T., Carver J. P. Differential involvement of cell surface sialic acid residues in wheat germ agglutinin binding to parental and wheat germ agglutinin-resistant Chinese hamster ovary cells. J Cell Biol. 1980 Apr;85(1):60–69. doi: 10.1083/jcb.85.1.60. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stoll J., Robbins A. R., Krag S. S. Mutant of Chinese hamster ovary cells with altered mannose 6-phosphate receptor activity is unable to synthesize mannosylphosphoryldolichol. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2296–2300. doi: 10.1073/pnas.79.7.2296. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sudo T., Onodera K. Isolation and characterization of tunicamycin resistant mutants from Chinese hamster ovary cells. J Cell Physiol. 1979 Oct;101(1):149–156. doi: 10.1002/jcp.1041010117. [DOI] [PubMed] [Google Scholar]
  31. Tenner A. J., Scheffler I. E. Lipid-saccharide intermediates and glycoprotein biosynthesis in a temperature-sensitive Chinese hamster cell mutant. J Cell Physiol. 1979 Feb;98(2):251–266. doi: 10.1002/jcp.1040980202. [DOI] [PubMed] [Google Scholar]
  32. Tenner A., Zieg J., Scheffler I. E. Glycoprotein synthesis in a temperature-sensitive Chinese hamster cell cycle mutant. J Cell Physiol. 1977 Feb;90(2):145–160. doi: 10.1002/jcp.1040900202. [DOI] [PubMed] [Google Scholar]
  33. Trowbridge I. S., Hyman R., Ferson T., Mazauskas C. Expression of Thy-1 glycoprotein on lectin-resistant lymphoma cell lines. Eur J Immunol. 1978 Oct;8(10):716–723. doi: 10.1002/eji.1830081009. [DOI] [PubMed] [Google Scholar]
  34. Trowbridge I. S., Hyman R., Mazauskas C. The synthesis and properties of T25 blycoprotein in Thy-1-negative mutant lymphoma cells. Cell. 1978 May;14(1):21–32. doi: 10.1016/0092-8674(78)90297-0. [DOI] [PubMed] [Google Scholar]
  35. Trowbridge I. S., Hyman R. Thy-1 variants of mouse lymphomas: biochemical characterization of the genetic defect. Cell. 1975 Nov;6(3):279–287. doi: 10.1016/0092-8674(75)90179-8. [DOI] [PubMed] [Google Scholar]
  36. Wright J. A. Concanavalin A as a selective agent in tissue culture for temperature-sensitive hamster cell lines. Can J Microbiol. 1975 Oct;21(10):1650–1654. doi: 10.1139/m75-240. [DOI] [PubMed] [Google Scholar]
  37. Wright J. A., Jamieson J. C., Ceri H. Studies on glycoprotein biosynthesis in concanavalin A-resistant cell lines. Defective formation of mannose-linked lipid intermediates. Exp Cell Res. 1979 Jun;121(1):1–8. doi: 10.1016/0014-4827(79)90437-3. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES