Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1985 Aug;5(8):2131–2141. doi: 10.1128/mcb.5.8.2131

Regulation of repressible acid phosphatase gene transcription in Saccharomyces cerevisiae.

J M Lemire, T Willcocks, H O Halvorson, K A Bostian
PMCID: PMC366931  PMID: 3915785

Abstract

We examined the genetic system responsible for transcriptional regulation of repressible acid phosphatase (APase; orthophosphoric-monoester phosphohydrolase [acid optimum, EC 3.1.3.2]) in Saccharomyces cerevisiae at the molecular level by analysis of previously isolated and genetically well-defined regulatory gene mutants known to affect APase expression. These mutants identify numerous positive- (PHO4, PHO2, PHO81) and negative-acting (PHO80, PHO85) regulatory loci dispersed throughout the yeast genome. We showed that the interplay of these positive and negative regulatory genes occurs before or during APase gene transcription and that their functions are all indispensible for normal regulation of mRNA synthesis. Biochemical evidence suggests that the regulatory gene products they encode are expressed constitutively. More detailed investigation of APase synthesis is a conditional PHO80(Ts) mutant indicated that neither PHO4 nor any other protein factor necessary for APase mRNA synthesis is transcriptionally regulated by PHO80. Moreover, in the absence of PHO80, the corepressor, presumed to be a metabolite of Pi, did not inhibit their function in the transcriptional activation of APase.

Full text

PDF
2131

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen N., Thill G. P., Kramer R. A. RNA and homology mapping of two DNA fragments with repressible acid phosphatase genes from Saccharomyces cerevisiae. Mol Cell Biol. 1983 Apr;3(4):562–569. doi: 10.1128/mcb.3.4.562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arima K., Oshima T., Kubota I., Nakamura N., Mizunaga T., Toh-e A. The nucleotide sequence of the yeast PHO5 gene: a putative precursor of repressible acid phosphatase contains a signal peptide. Nucleic Acids Res. 1983 Mar 25;11(6):1657–1672. doi: 10.1093/nar/11.6.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bach M. L., Lacroute F., Botstein D. Evidence for transcriptional regulation of orotidine-5'-phosphate decarboxylase in yeast by hybridization of mRNA to the yeast structural gene cloned in Escherichia coli. Proc Natl Acad Sci U S A. 1979 Jan;76(1):386–390. doi: 10.1073/pnas.76.1.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bajwa W., Meyhack B., Rudolph H., Schweingruber A. M., Hinnen A. Structural analysis of the two tandemly repeated acid phosphatase genes in yeast. Nucleic Acids Res. 1984 Oct 25;12(20):7721–7739. doi: 10.1093/nar/12.20.7721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bostian K. A., Lemire J. M., Cannon L. E., Halvorson H. O. In vitro synthesis of repressible yeast acid phosphatase: identification of multiple mRNAs and products. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4504–4508. doi: 10.1073/pnas.77.8.4504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bostian K. A., Lemire J. M., Halvorson H. O. Physiological control of repressible acid phosphatase gene transcripts in Saccharomyces cerevisiae. Mol Cell Biol. 1983 May;3(5):839–853. doi: 10.1128/mcb.3.5.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dawes E. A., Senior P. J. The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol. 1973;10:135–266. doi: 10.1016/s0065-2911(08)60088-0. [DOI] [PubMed] [Google Scholar]
  8. Erecińska M., Stubbs M., Miyata Y., Ditre C. M. Regulation of cellular metabolism by intracellular phosphate. Biochim Biophys Acta. 1977 Oct 12;462(1):20–35. doi: 10.1016/0005-2728(77)90186-4. [DOI] [PubMed] [Google Scholar]
  9. KATCHMAN B. J., FETTY W. O. Phosphorus metabolism in growing cultures of Saccharomyces cerevisiae. J Bacteriol. 1955 Jun;69(6):607–615. doi: 10.1128/jb.69.6.607-615.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kaneko Y., Tamai Y., Toh-e A., Oshima Y. Transcriptional and post-transcriptional control of PHO8 expression by PHO regulatory genes in Saccharomyces cerevisiae. Mol Cell Biol. 1985 Jan;5(1):248–252. doi: 10.1128/mcb.5.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kramer R. A., Andersen N. Isolation of yeast genes with mRNA levels controlled by phosphate concentration. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6541–6545. doi: 10.1073/pnas.77.11.6541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kramer R. A., DeChiara T. M., Schaber M. D., Hilliker S. Regulated expression of a human interferon gene in yeast: control by phosphate concentration or temperature. Proc Natl Acad Sci U S A. 1984 Jan;81(2):367–370. doi: 10.1073/pnas.81.2.367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lange P., Hansche P. E. Mapping of a centromere-linked gene responsible for constitutive acid phosphatase synthesis in yeast. Mol Gen Genet. 1980;180(3):605–607. doi: 10.1007/BF00268067. [DOI] [PubMed] [Google Scholar]
  14. Miller M. J., Xuong N. H., Geiduschek E. P. Quantitative analysis of the heat shock response of Saccharomyces cerevisiae. J Bacteriol. 1982 Jul;151(1):311–327. doi: 10.1128/jb.151.1.311-327.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  16. Rogers D. T., Lemire J. M., Bostian K. A. Acid phosphatase polypeptides in Saccharomyces cerevisiae are encoded by a differentially regulated multigene family. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2157–2161. doi: 10.1073/pnas.79.7.2157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Roomans G. M., Borst-Pauwels G. W. Interaction of cations with phosphate uptake by Saccharomyces cerevisiae. Effects of surface potential. Biochem J. 1979 Mar 15;178(3):521–527. doi: 10.1042/bj1780521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Roth R. M., Dampier C. Dependence of ribonucleic acid synthesis on continuous protein synthesis in yeast. J Bacteriol. 1972 Feb;109(2):773–779. doi: 10.1128/jb.109.2.773-779.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. SCHMIDT G., BARTSCH G., LAUMONT M. C., HERMAN T., LISS M. Acid phosphatase of bakers' yeast: an enzyme of the external cell surface. Biochemistry. 1963 Jan-Feb;2:126–131. doi: 10.1021/bi00901a022. [DOI] [PubMed] [Google Scholar]
  20. Solimene R., Guerrini A. M., Donini P. Levels of acid-soluble polyphosphate in growing cultures of Saccharomyces cerevisiae. J Bacteriol. 1980 Aug;143(2):710–714. doi: 10.1128/jb.143.2.710-714.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. To-E A., Ueda Y., Kakimoto S. I., Oshima Y. Isolation and characterization of acid phosphatase mutants in Saccharomyces cerevisiae. J Bacteriol. 1973 Feb;113(2):727–738. doi: 10.1128/jb.113.2.727-738.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Toh-e A., Inouye S., Oshima Y. Structure and function of the PHO82-pho4 locus controlling the synthesis of repressible acid phosphatase of Saccharomyces cerevisiae. J Bacteriol. 1981 Jan;145(1):221–232. doi: 10.1128/jb.145.1.221-232.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Toh-e A., Kakimoto S. Genes coding for the structure of the acid phosphatases in Saccharomyces cerevisiae. Mol Gen Genet. 1975 Dec 30;143(1):65–70. doi: 10.1007/BF00269421. [DOI] [PubMed] [Google Scholar]
  24. Toh-e A., Kakimoto S., Oshima Y. Two new genes controlling the constitutive acid phosphatase synthesis in Saccharomyces cerevisiae. Mol Gen Genet. 1975 Nov 3;141(1):81–83. doi: 10.1007/BF00332380. [DOI] [PubMed] [Google Scholar]
  25. Toh-e A., Kaneko Y., Akimaru J., Oshima Y. An insertion mutation associated with constitutive expression of repressible acid phosphatase in Saccharomyces cerevisiae. Mol Gen Genet. 1983;191(3):339–346. doi: 10.1007/BF00425743. [DOI] [PubMed] [Google Scholar]
  26. Ueda Y., Oshima Y. A constitutive mutation, phoT, of the repressible acid phosphatase synthesis with inability to transport inorganic phosphate in Saccharomyces cerevisiae. Mol Gen Genet. 1975;136(3):255–259. doi: 10.1007/BF00334020. [DOI] [PubMed] [Google Scholar]
  27. Ueda Y., To-E A., Oshima Y. Isolation and characterization of recessive, constitutive mutations for repressible acid phosphatase synthesis in Saccharomyces cerevisiae. J Bacteriol. 1975 Jun;122(3):911–922. doi: 10.1128/jb.122.3.911-922.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Urech K., Dürr M., Boller T., Wiemken A., Schwencke J. Localization of polyphosphate in vacuoles of Saccharomyces cerevisiae. Arch Microbiol. 1978 Mar;116(3):275–278. doi: 10.1007/BF00417851. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES