Skip to main content
ISRN Veterinary Science logoLink to ISRN Veterinary Science
. 2012 Sep 6;2012:802308. doi: 10.5402/2012/802308

Extracellular Proteins of Mycoplasma synoviae

Manuel Sebastián Rebollo Couto 1,*, Catia Silene Klein 2, Daiane Voss-Rech 2, Hernán Terenzi 1
PMCID: PMC3671734  PMID: 23762591

Abstract

Mycoplasma synoviae is a Gram positive bacteria lacking of cell wall that affects chickens and turkeys causing infection in the upper respiratory tract and in some cases arthritis, with economical impact to broiler breeders. Treatment and prevention of avian synovitis depend on knowledge of the infectious process. Secreted or surface-exposed proteins play a critical role in disease because they often mediate interactions between host and pathogen. In the present work, we sought to identify possible M. synoviae secreted proteins by cultivating the bacteria in a modified protein-free Frey medium. Using this approach, we were able to detect in the cell-free fraction a number of proteins that have been shown in other organisms to be secreted, suggesting that they may also be secreted by M. synoviae.

1. Introduction

The growth of poultry industry is often limited by infectious diseases that affect birds. Mycoplasma synoviae is a major avian extracellular pathogen associated with synovitis in chickens and turkeys [1, 2]. Disease can occur as chronical subclinical to severe upper respiratory infection and, under unknown conditions, become systemic and cause arthritis [3]. The disease causes economic losses by retarding growth and downgrading at slaughter [3]. Strategies to control this pathogen rely mainly in better management practices, improvement in housing conditions and antibiotic usage, whereas an effective vaccine is still not available [4].

Secreted proteins of pathogenic bacteria are key factors in host colonization. The analysis of these proteins, called secretome, can therefore permit the identification of new putative virulence factors that are fundamental for host invasion and survival in the environment within the host [5]. In this context, two-dimensional electrophoresis (2DE) along with peptide fingerprinting by mass spectrometry (MS) and subsequent protein identification have become a powerful method to unravel pathogenicity factors in microorganisms [6, 7].

We have recently reported a proteomic analysis of M. synoviae cell extracts in conventional Frey medium [8]. In the present work, we have grown M. synoviae in the same typical culture medium and then incubated the cells in a protein-free modified Frey medium as a strategy to indicate proteins that can be secreted to the medium by the bacteria.

2. Methods

2.1. Mycoplasma synoviae Cultures

M. synoviae strain 53 isolated from a broiler breeder was grown in the Laboratory of Genetics and Animal Health from EMBRAPA Swine and Poultry (Concórdia, C, Brazil) as described by Frey and coworkers (1968). The cells were cultured in Frey broth [9] supplemented with 12% swine serum, 0.1 g/L nicotinamide adenine dinucleotide (NAD), 0.1 g/L cysteine hydrochloride hydrate, 106 IU penicillin G, and 0.25 g/L thallium acetate at 37°C until the culture reached mid-log phase as indicated by color change and turbidity. Cells were pelleted by centrifugation and washed three times with “protein-free” modified Frey broth (3 g/L glucose, 0.1 g/L NAD, 0.1 g/L cysteine hydrochloride hydrate, 106 IU penicillin G, and 0.25 g/L thallium acetate) to reduce the level of contaminant proteins present in the growth medium.

Cells were cultured in this protein-free medium for 48 h and then centrifuged. Cell pellets were stored at −80°C and supernatants at −20°C. In order to assess the presence of contaminant proteins, equal volumes of protein-free Frey broth not exposed to M. synoviae cells were concentrated and analysed by two-dimensional gel electrophoresis (2DE) as described below.

2.2. Medium Concentration and Protein Extraction

Samples of 500 mL of protein-free Frey broth inoculated with M. synoviae were concentrated to 50 ml in a Quix Stand Benchtop concentrator through a GE Healthcare Xampler UFP-10-C-4X2MA membrane, 10,000 NMWC cutoff. Trichloroacetic acid (TCA) was added to a final concentration of 12% and samples were allowed to precipitate for at least 1 h on ice. Proteins were then pelleted by centrifugation at 16,000 x g for 20 min at 4°C and pellets were washed three times with cold acetone (−20°C). Samples were then airdried and solubilized in rehydration solution containing 7 M urea, 2 M thiourea, 4% CHAPS, 0.5% IPG buffer, pH 3–10, 18 mM dithiothreitol (DTT), and 0.002% bromophenol blue. Total protein concentration was determined using the 2-D Quant Kit (GE Healthcare) according to the manufacturer's instructions.

2.3. Two-Dimensional Electrophoresis

Samples in rehydration solution (250 μg of total proteins) were applied on 13 cm long GE Immobiline DryStrip Gels (Ge Healthcare, Uppsala, Sweden), pH 3–10, and kept overnight at room temperature prior to isoelectric focusing (IEF). IEF was performed using the Ettan IPGphor 3 system (Ge Healthcare, Uppsala, Sweden) with maximum temperature set to 20°C with a total voltage of 17 kVh (500 V for 1 h, 500 V to 1000 V gradient in 1 h, 1000 V to 8000 V gradient in 2 hours 30 min, 8000 V for 30 min) and maximum current set at 25 μA/strip. After IEF, strips were equilibrated for 20 min in 6 M urea, 30% glycerol, 2% SDS, 50 mM Tris-HCl, pH 8.8 containing 1% DTT, and another 20 min in the same solution containing 4% iodoacetamide instead of DTT. Equilibration treatments were performed under gentle shaking at room temperature. Second dimension was run in homogeneous 12% acrylamide gels. The gels were then fixed in 8% phosphoric acid and 40% ethanol and stained with Colloidal Coomassie Brilliant Blue G-250 (Bio-Rad, Hercules, USfA). The stained gels were scanned in a GE Healthcare ImageScanner III and images were analysed with the GE Healthcare ImageMaster 2D Platinum 7.2 software, having their molecular mass and isoelectric point calculated. Spots were excised manually and kept in 0.5% acetic acid.

2.4. In-Gel Digestion, Mass Spectrometry Analysis, and Protein Identification

Gel plugs were washed three times in 25 mM ammonium bicarbonate in 50% acetonitrile for destaining and dehydrated in 100% acetonitrile. Dry plugs were rehydrated with trypsin solution (10 μg/mL Promega Trypsin Gold Mass Spectrometry Grade in 25 mM ammonium bicarbonate) and incubated for 12 to 16 h at 37°C. Peptides were extracted from gel plugs by three successive washes with 50% acetonitrile, 5% trifluoroacetic acid (TFA) for 30 min per wash and combined peptide extracts were dried in a vacuum concentrator (Eppendorf Vacuum Concentrator Plus). Peptides were resuspended in 0.1% TFA and mixed with equal volume of matrix solution (10 mg/mL α-cyano-4-hydroxycinnamic acid in 0,1% TFA in 1 : 1 acetonitrile/methanol), applied on the MALDI target plate, and allowed to crystallize at room temperature. Mass spectra were obtained in a mass range of 400 to 4,300 Da using a laser (337 nm, 200 Hz) as the ionization source. Each spectrum was formed by accumulated data from at least 900 shots, using the Bruker Daltonics flexControl 3.3 program. The instrument (Autoflex III MALDI-TOF Bruker Daltonics) was used in reflectron positive mode with an acceleration voltage of 19 kV. As external calibrant a Bruker Daltonics mix containing angiotensin II, angiotensin I, substance P, bombesin, ACTH Chip 1-17, ACTH Chip 18-39, and somatostatin 28, was used. Matrix and autolytic peaks of trypsin were used as internal calibration standards. Peptide lists were compared to the NCBInr database, using MASCOT search engine (http://www.matrixscience.com/). Search parameters were set as follows: enzyme: trypsin; taxon: Mycoplasma; fixed modifications: cysteine carbamidomethylation; variable modifications: methionine oxidation; mass tolerance: 100 ppm; monoisotopic spectra; 1+ charged masses, decoy enabled. MASCOT score was the main confidence factor for protein identification being also considered data of theoretical and obtained molecular weight and isoelectric point values, number of peptide matches, and the percentage of the total translated ORF sequence coverage by the peptides.

3. Results and Discussion

After 48 h of incubation in a protein-free Frey modified broth, protein extraction from cell pellets yielded the identification of 27 protein species, 8 of which were not detected previously from cell extracts of Mycoplasma synoviae cultivated in conventional Frey broth conditions [8]. These proteins are 6-phosphofructokinase, endopeptidase O, glucose-6-phosphate isomerase, leucyl aminopeptidase, phosphoenolpyruvate-protein phosphatase, serine/threonine protein kinase, transcription elongation factor GreA, and XAA-Pro aminopeptidase.

In the extracellular fraction we have identified 3 uncharacterized proteins and 16 different characterized proteins (Figure 1 and Table 1), eight of which were not present in the cell fraction (Table 2), where their presence may have been masked by the presence of more prominent protein species. These proteins are cell division protein, DNA polymerase III beta subunit, elongation factor G, fructose-bisphosphate aldolase, and hypothetical proteins MS53_0566, MS53_0115, and MS53_0598.

Figure 1.

Figure 1

Two-dimensional gel electrophoresis profile of extracellular fraction of culture media incubated with Mycoplasma synoviae. Numbered arrows correspond to protein identities listed in Table 2.

Table 1.

Cellular proteins identified in Mycoplasma synoviae.

Identity gi entry MASCOT Observed Theoretical
RowSpanEmpty Score MW pI MW pI
6-phosphofructokinase gi∣144575058 96 33747 9.24 33891 8.67
Acetate kinase gi∣144575215 120 37945 7.61 44515 7.10
Acyl carrier protein phosphodiesterase gi∣71894112 96 13718 8.42 22687 7.74
Cell division protein gi∣71894355 106 70988 3.51 62539 4.38
Elongation factor EF-Ts gi∣71894429 91 31657 5.87 31938 5.72
Elongation factor Tu gi∣71894677 126 39239 5.50 43230 5.61
Endopeptidase O gi∣71894512 162 64809 7.21 42295 6.08
F0F1 ATP synthase subunit beta gi∣71894420 89 47222 6.01 50804 5.76
Glucose-6-phosphate isomerase gi∣71894495 65 44765 7.56 48990 6.99
Hypothetical protein MS53_0316 gi∣71894332 68 73092 4.86 81668 5.48
Leucyl aminopeptidase gi∣71894176 151 47812 5.65 52277 5.83
Molecular chaperone DnaK gi∣71894366 115 54392 5.37 65096 5.17
Phosphoenolpyruvate-protein phosphatase gi∣71894534 103 58361 5.23 63753 5.19
Phosphopyruvate hydratase gi∣71894034 108 45607 7.20 63753 5.19
Phosphotransacetylase gi∣71894663 98 34133 6.46 35000 6.06
Putative lipoprotein gi∣144574996 124 92020 4.96 100677 5.13
Putative lipoprotein gi∣71894364 103 96688 5.71 112804 5.94
Putative lipoprotein gi∣71894528 66 81447 5.73 85199 5.72
Putative trigger factor gi∣71894613 126 55239 5.26 53932 5.31
Pyruvate dehydrogenase E1 component, beta subunit gi∣144575045 126 30000 7.41 35853 6.73
Ribonucleotide-diphosphate reductase subunit beta gi∣71894414 153 34317 6.10 39239 5.09
Serine/threonine protein kinase gi∣47459394 77 37945 6.15 37008 9.35
Single stranded binding protein gi∣71894544 155 15419 4.29 21239 4.50
Thiol peroxidase gi∣71894383 125 8897 5.45 18263 5.93
Thioredoxin reductase gi∣71894606 107 32559 6.32 27439 5.37
Transcription elongation factor GreA gi∣71894394 66 8597 4.69 17916 4.95
XAA-Pro aminopeptidase gi∣71894172 78 37710 6.73 40194 6.12

Table 2.

Proteins present in the extracellular fraction of culture media incubated with Mycoplasma synoviae.

Identity gi entry MASCOT Observed Theoretical
RowSpanEmpty Score MW pI MW pI
(1) Cell division protein gi∣144575078 97 77515 3.66 62539 4.38
(2) Elongation factor G gi∣71894071 79 72218 5.25 77259 5.28
(3) Molecular chaperone DnaK gi∣71894366 61 63596 3.51 65096 5.17
(4) Cell division protein gi∣71894355 120 79326 3.49 62539 4.38
(5) Elongation factor Tu gi∣71894677 111 37523 5.43 43230 5.61
(6) Phosphopyruvate hydratase gi∣71894034 62 43611 6.01 49330 6.59
(7) Ribonucleotide-diphosphate reductase subunit beta gi∣71894414 127 34255 3.88 39239 5.09
(8) Phosphotransacetylase gi∣71894663 169 34605 4.94 35000 6.06
(9) Pyruvate dehydrogenase E1 component, alpha subunit gi∣71894294 68 36239 5.87 42131 6.20
(10) Acetate kinase gi∣144575215 80 36194 6.10 44515 7.10
(11) DNA polymerase III beta subunit gi∣71894027 104 38563 6.96 43399 7.62
(12) Thioredoxin reductase gi∣144575189 110 31039 4.67 27439 5.37
(13) Pyruvate dehydrogenase E1 component, beta subunit gi∣144575045 224 32423 6.12 35853 6.73
(14) Fructose-bisphosphate aldolase gi∣71894369 76 26539 5.82 31237 6.27
(15) Single stranded binding protein gi∣71894544 88 14149 3.00 21239 4.50
(16) Acyl carrier protein phosphodiesterase gi∣71894112 94 13164 7.29 22687 7.74
(17) Hypothetical protein MS53_0566 gi∣144575177 90 10711 3.36 20869 4.96
(18) Hypothetical protein MS 53_0115 gi∣71894139 103 18926 8.23 21059 8.77
(19) Hypothetical protein MS 53_0598 gi∣71894608 97 42120 4.67 44307 5.60

Acetate kinase and acyl carrier protein phosphodiesterase cause immunogenic responses in cattle infected by M. mycoides and M. bovis, respectively [10, 11]. As these proteins are able to promote an immune response in their hosts, it seems that they may be secreted or surface exposed during the infectious process.

Thioredoxin reductase was described as surface exposed in Trichomonas vaginalis, and the authors suggest that they may change host mucus viscosity by modifying disulphide bonds [12].

Fructose-bisphosphate aldolase, which is surface exposed in Enterococcus faecalis [13], is immunogenic to cattle infected with M. mycoides [10].

Both subunits alpha and beta of pyruvate dehydrogenase component E1 from bacilli and mycoplasmas show immunogenicity [10, 14, 15], and the subunit alpha of this complex was shown to be surface-exposed in M. genitalium [14]. Moreover, both subunits alpha and beta have increased expression in M. pulmonis clones resistant to gentamicin and melittin [16].

Elongation factor G, which is secreted by Paenibacillus larvae [17] is produced by Bacillus anthracis and B. thuringiensis and are immunogenic to their hosts [15], as it happens in cattle infected by M. bovis [11] and M. mycoides [18] and chickens infected by M. synoviae [18].

EF-Tu has expression upregulated in the highly adhesive strain Lactobacillus plantarum WHE92 [19] and was demonstrated as extracellular in Mycobacterium tuberculosis, with capacity to bind to human plasminogen [20]. It is also secreted by B. anthracis, B. cereus, and B. thuringiensis with immunogenic effects [15, 21]. About 17% of total M. pneumoniae EF-Tu is associated with the membrane [22], being also demonstrated on the surface of M. genitalium and M. pneumoniae [14, 23]. It is immunogenic to mice infected with M. genitalium [14], to cattle infected with M. mycoides [10], to pigs infected with M. hyopneumoniae [24], and to chickens infected with M. synoviae [18].

As it happens to EF-Tu, the molecular chaperone DnaK shows upregulation in the highly adhesive strain of L. plantarum WHE 92 [19]. It was also observed on the surface of E. faecalis, along with fructose-bisphosphate aldolase [13], and in M. tuberculosis it has been demonstrated as extracellular, immunogenic, and capable to bind to human plasminogen [20, 25, 26]. B. anthracis DnaK is secreted, immunogenic and seems to act as virulence factor [21]. These evidences suggest that the chaperone DnaK is secreted by a number of pathogens and may be important in the disease process by mediating adhesion to host tissues. Pigs infected with M. hyopneumoniae [24], cattle with M. mycoides [10] and M. bovis [11], mice with M. genitalium [14], and chickens infected with M. synoviae [18] all rise antibodies against the molecular chaperone DnaK.

Finally, enolase is an enzyme widely described as secreted or surface exposed in several microorganisms of the genera Paenibacillus, Bacillus, Lactobacillus, and Streptococcus [17, 2730], showing immunogenic properties [15, 21, 29] and ability to bind to fibronectin [30, 31]. Enolase is also shown to be a virulence factor in P. larvae [32] and is found on the surface of L. crispatus in a pH-dependent way, being released to the medium at pH close to its isoelectric point or more alkaline [28]. In Mycoplasmas it has been detected on the surface of M. gallisepticum and M. fermentans, in both cases able to bind to plasminogen [33, 34]. In M. suis its role in cell adhesion was clearly demonstrated by inserting the gene in Escherichia coli that once transformed became able to bind to swine red blood cells [35].

4. Concluding Remarks

We conclude that by incubating M. synoviae cells in protein-free modified Frey medium we were able to produce clearly different gel profiles using protein extracts from the cellular and extracellular fractions, showing exclusive proteins for each fraction. In the extracellular fraction we have found proteins that are originally described as cytosolic but in more recent studies are shown in other pathogenic microorganisms to be either surface exposed or secreted, immunogenic or able to bind host components as fibronectin or plasminogen, thus participating in the infectious process. These proteins are acetate kinase, elongation factor G, elongation factor Tu, acyl carrier protein phosphodiesterase, fructose bisphosphate aldolase, thioredoxin reductase, DnaK, both alpha and beta units of pyruvate dehydrogenase E1 component, and enolase. These evidences suggest that they may be secreted by M. synoviae and can thus be implicated in disease process.

Conflict of Interests

The authors declare that they have no conflict of interests.

Acknowledgments

This work was supported by grants from INBEB-CNPq, CAPES, FAPESC, MCTI, FINEP, and GENOPROT. We would also like to thank Dr Luciano Huergo for his great support to this work.

References

  • 1.Kang MS, Gazdzinski P, Kleven SH. Virulence of recent isolates of Mycoplasma synoviae in turkeys. Avian Diseases. 2002;46(1):102–110. doi: 10.1637/0005-2086(2002)046[0102:VORIOM]2.0.CO;2. [DOI] [PubMed] [Google Scholar]
  • 2.Lockaby SB, Hoerr FJ, Lauerman LH, Kleven SH. Pathogenicity of Mycoplasma synoviae in Broiler chickens. Veterinary Pathology. 1998;35(3):178–190. doi: 10.1177/030098589803500303. [DOI] [PubMed] [Google Scholar]
  • 3.Dufour-Gesbert F, Dheilly A, Marois C, Kempf I. Epidemiological study on Mycoplasma synoviae infection in layers. Veterinary Microbiology. 2006;114(1-2):148–154. doi: 10.1016/j.vetmic.2005.10.040. [DOI] [PubMed] [Google Scholar]
  • 4.Gerchman I, Lysnyansky I, Perk S, Levisohn S. In vitro susceptibilities to fluoroquinolones in current and archived Mycoplasma gallisepticum and Mycoplasma synoviae isolates from meat-type turkeys. Veterinary Microbiology. 2008;131(3-4):266–276. doi: 10.1016/j.vetmic.2008.04.006. [DOI] [PubMed] [Google Scholar]
  • 5.Trost M, Wehmhöner D, Kärst U, Dieterich G, Wehland J, Jänsch L. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species . Proteomics. 2005;5(6):1544–1557. doi: 10.1002/pmic.200401024. [DOI] [PubMed] [Google Scholar]
  • 6.Cordwell SJ, Nouwens AS, Walsh BJ. Comparative proteomics of bacterial pathogens. Proteomics. 2001;1(4):461–472. doi: 10.1002/1615-9861(200104)1:4<461::AID-PROT461>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  • 7.Jungblut PR. Proteome analysis of bacterial pathogens. Microbes and Infection. 2001;3(10):831–840. doi: 10.1016/s1286-4579(01)01441-1. [DOI] [PubMed] [Google Scholar]
  • 8.Menegatti ACO, Tavares CP, Vernal J, Klein CS, Huergo L, Terenzi H. First partial proteome of the poultry pathogen Mycoplasma synoviae . Veterinary Microbiology. 2010;145(1-2):134–141. doi: 10.1016/j.vetmic.2010.03.006. [DOI] [PubMed] [Google Scholar]
  • 9.Frey ML, Hanson RP, Andrson DP. A medium for the isolation of avian mycoplasmas. American Journal of Veterinary Research. 1968;29(11):2163–2171. [PubMed] [Google Scholar]
  • 10.Jores J, Meens J, Buettner FFR, Linz B, Naessens J, Gerlach GF. Analysis of the immunoproteome of Mycoplasma mycoides subsp. mycoides small colony type reveals immunogenic homologues to other known virulence traits in related Mycoplasma species . Veterinary Immunology and Immunopathology. 2009;131(3-4):238–245. doi: 10.1016/j.vetimm.2009.04.016. [DOI] [PubMed] [Google Scholar]
  • 11.Naseem S, Meens J, Jores J, et al. Phage display-based identification and potential diagnostic application of novel antigens from Mycoplasma mycoides subsp. mycoides small colony type. Veterinary Microbiology. 2010;142(3-4):285–292. doi: 10.1016/j.vetmic.2009.09.071. [DOI] [PubMed] [Google Scholar]
  • 12.Kucknoor AS, Mundodi V, Alderete JF. The proteins secreted by Trichomonas vaginalis and vaginal epithelial cell response to secreted and episomally expressed AP65. Cellular Microbiology. 2007;9(11):2586–2597. doi: 10.1111/j.1462-5822.2007.00979.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Bøhle LA, Riaz T, Egge-Jacobsen W, et al. Identification of surface proteins in Enterococcus faecalis V583. BMC Genomics. 2011;12, article 135 doi: 10.1186/1471-2164-12-135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.McGowin CL, Spagnuolo RA, Pyles RB. Mycoplasma genitalium rapidly disseminates to the upper reproductive tracts and knees of female mice following vaginal inoculation. Infection and Immunity. 2010;78(2):726–736. doi: 10.1128/IAI.00840-09. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.DelVecchio VG, Connolly JP, Alefantis TG, et al. Proteomic profiling and identification of immunodominant spore antigens of Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis . Applied and Environmental Microbiology. 2006;72(9):6355–6363. doi: 10.1128/AEM.00455-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Fehri LF, Sirand-Pugnet P, Gourgues G, Jan G, Wróblewski H, Blanchard A. Resistance to antimicrobial peptides and stress response in Mycoplasma pulmonis . Antimicrobial Agents and Chemotherapy. 2005;49(10):4154–4165. doi: 10.1128/AAC.49.10.4154-4165.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Antúnez K, Anido M, Evans JD, Zunino P. Secreted and immunogenic proteins produced by the honeybee bacterial pathogen, Paenibacillus larvae . Veterinary Microbiology. 2010;141(3-4):385–389. doi: 10.1016/j.vetmic.2009.09.006. [DOI] [PubMed] [Google Scholar]
  • 18.Berčič RL, Slavec B, Lavrič M, et al. Identification of major immunogenic proteins of Mycoplasma synoviae isolates. Veterinary Microbiology. 2008;127(1-2):147–154. doi: 10.1016/j.vetmic.2007.07.020. [DOI] [PubMed] [Google Scholar]
  • 19.Izquierdo E, Horvatovich P, Marchioni E, Aoude-Werner D, Sanz Y, Ennahar S. 2-DE and MS analysis of key proteins in the adhesion of Lactobacillus plantarum, a first step toward early selection of probiotics based on bacterial biomarkers. Electrophoresis. 2009;30(6):949–956. doi: 10.1002/elps.200800399. [DOI] [PubMed] [Google Scholar]
  • 20.Xolalpa W, Vallecillo AJ, Lara M, et al. Identification of novel bacterial plasminogen-binding proteins in the human pathogen Mycobacterium tuberculosis . Proteomics. 2007;7(18):3332–3341. doi: 10.1002/pmic.200600876. [DOI] [PubMed] [Google Scholar]
  • 21.Chitlaru T, Gat O, Grosfeld H, Inbar I, Gozlan Y, Shafferman A. Identification of in vivo-expressed immunogenic proteins by serological proteome analysis of the Bacillus anthracis secretome. Infection and Immunity. 2007;75(6):2841–2852. doi: 10.1128/IAI.02029-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Dallo SF, Kannan TR, Blaylock MW, Baseman JB. Elongation factor Tu and E1 β subunit of pyruvate dehydrogenase complex act as fibronectin binding proteins in Mycoplasma pneumoniae . Molecular Microbiology. 2002;46(4):1041–1051. doi: 10.1046/j.1365-2958.2002.03207.x. [DOI] [PubMed] [Google Scholar]
  • 23.Balasubramanian S, Kannan TR, Baseman JB. The surface-exposed carboxyl region of Mycoplasma pneumoniae elongation factor Tu interacts with fibronectin. Infection and Immunity. 2008;76(7):3116–3123. doi: 10.1128/IAI.00173-08. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Pinto PM, Chemale G, de Castro LA, et al. Proteomic survey of the pathogenic Mycoplasma hyopneumoniae strain 7448 and identification of novel post-translationally modified and antigenic proteins. Veterinary Microbiology. 2007;121(1-2):83–93. doi: 10.1016/j.vetmic.2006.11.018. [DOI] [PubMed] [Google Scholar]
  • 25.Mattow J, Schaible UE, Schmidt F, et al. Comparative proteome analysis of culture supernatant proteins from virulent Mycobacterium tuberculosis H37Rv and attenuated M. bovis BCG Copenhagen. Electrophoresis. 2003;24(19-20):3405–3420. doi: 10.1002/elps.200305601. [DOI] [PubMed] [Google Scholar]
  • 26.Bartow RA, McMurray DN. Cellular and humoral immune responses to mycobacterial stress proteins in experimental pulmonary tuberculosis. Tubercle and Lung Disease. 1997;78(3-4):185–193. doi: 10.1016/s0962-8479(97)90025-3. [DOI] [PubMed] [Google Scholar]
  • 27.Lamonica JM, Wagner M, Eschenbrenner M, et al. Comparative secretome analyses of three Bacillus anthracis strains with variant plasmid contents. Infection and Immunity. 2005;73(6):3646–3658. doi: 10.1128/IAI.73.6.3646-3658.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Antikainen J, Kupannen V, Lähteenmäki K, Korhonen TK. pH-dependent association of enolase and glyceraldehyde-3-phosphate dehydrogenase of Lactobacillus crispatus with the cell wall and lipoteichoic acids. Journal of Bacteriology. 2007;189(12):4539–4543. doi: 10.1128/JB.00378-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Feng Y, Pan X, Sun W, et al. Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. Journal of Infectious Diseases. 2009;200(10):1583–1592. doi: 10.1086/644602. [DOI] [PubMed] [Google Scholar]
  • 30.Castaldo C, Vastano V, Siciliano RA, et al. Surface displaced alfa-enolase of Lactobacillus plantarum is a fibronectin binding protein. Microbial Cell Factories. 2009;8, article 14 doi: 10.1186/1475-2859-8-14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Esgleas M, Li Y, Hancock MA, Harel J, Dubreuil JD, Gottschalk M. Isolation and characterization of α-enolase, a novel fibronectin-binding protein from Streptococcus suis . Microbiology. 2008;154(9):2668–2679. doi: 10.1099/mic.0.2008/017145-0. [DOI] [PubMed] [Google Scholar]
  • 32.Antúnez K, Anido M, Arredondo D, Evans JD, Zunino P. Paenibacillus larvae enolase as a virulence factor in honeybee larvae infection. Veterinary Microbiology. 2011;147(1-2):83–89. doi: 10.1016/j.vetmic.2010.06.004. [DOI] [PubMed] [Google Scholar]
  • 33.Chen H, Yu S, Shen X, et al. The Mycoplasma gallisepticumα-enolase is cell surface-exposed and mediates adherence by binding to chicken plasminogen. Microbial Pathogenesis. 2011;51(4):285–290. doi: 10.1016/j.micpath.2011.03.012. [DOI] [PubMed] [Google Scholar]
  • 34.Yavlovich A, Rechnitzer H, Rottem S. α-Enolase resides on the cell surface of Mycoplasma fermentans and binds plasminogen. Infection and Immunity. 2007;75(12):5716–5719. doi: 10.1128/IAI.01049-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Schreiner SA, Sokoli A, Felder KM, et al. The surface-localised α-enolase of Mycoplasma suis is an adhesion protein. Veterinary Microbiology. 2012;156(1-2):88–95. doi: 10.1016/j.vetmic.2011.10.010. [DOI] [PubMed] [Google Scholar]

Articles from ISRN Veterinary Science are provided here courtesy of Wiley

RESOURCES