Abstract
Soybean (Glycine max L.) cotyledon callus grown on radioactive 2,4-dichlorophenoxyacetic acid (2,4-D-1-14C) as an auxin produced 2,4-D metabolites, which qualitatively and quantitatively changed with time. Water soluble fractions from the tissue exhibited a steady increase in radioactivity during the course of 24 days. Following β-glucosidase treatment, at least eight aglycones were obtained from the water soluble fraction of the tissue after 8 days. The metabolite, 4-hydroxy-2,5-dichlorophenoxyacetic acid was the most abundant aglycone during the entire 32 day growth period while 4-hydroxy-2,3-dichlorophenoxyacetic acid was detected as a minor metabolite. Radioactivity in the ether soluble acidic fractions reached a maximum of 82% of the total in the tissue after 2 days. The level then decreased to 44% by the end of 24 days. A total of seven ether soluble components were detected. In addition to 2,4-D glutamic acid, which was detected in high amounts after 24 hours, 2,4-D aspartic acid was found to be the most abundant ether soluble metabolite after longer time periods. Mass spectral data and a fragmentation pattern are presented for 2,4-D aspartic acid.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andreae W. A., Good N. E. Studies on 3-Indoleacetic Acid Metabolism. IV. Conjugation with Aspartic Acid and Ammonia as Processes in the Metabolism of Carboxylic Acids. Plant Physiol. 1957 Nov;32(6):566–572. doi: 10.1104/pp.32.6.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bach M. K. Metabolites of 2,4-dichlorophenoxyacetic acid from bean stems. Plant Physiol. 1961 Sep;36(5):558–565. doi: 10.1104/pp.36.5.558. [DOI] [PMC free article] [PubMed] [Google Scholar]