Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Jul;50(1):141–148. doi: 10.1104/pp.50.1.141

The Development of Photosynthesis in a Greening Mutant of Chlorella and an Analysis of the Light Saturation Curve 1

H A Herron 1, D Mauzerall 1
PMCID: PMC367330  PMID: 16658109

Abstract

Photosynthetic oxygen evolution considerably precedes the rise in chlorophyll during the greening of a yellow mutant of Chlorella vulgaris. Dark-grown cells required 20 times more light to saturate photosynthesis than light-grown or normal cells. The chlorophyll appears to add first to active reaction centers, then to fill in a more general antenna. The carotenoid pigments seem to add more randomly to the reaction centers. The shape of the light saturation curves can be explained with the assumption that an excitation in the antenna can reach several reaction centers. The efficiency of the total unit is constant during the greening process.

Full text

PDF
141

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ben-Shaul Y., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. VII. Fine Structure of the Developing Plastid. Plant Physiol. 1964 Mar;39(2):231–240. doi: 10.1104/pp.39.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burr A., Mauzerall D. The oxygen luminometer. An apparatus to determine small amounts of oxygen, and application to photosynthesis. Biochim Biophys Acta. 1968 Apr 2;153(3):614–624. doi: 10.1016/0005-2728(68)90189-8. [DOI] [PubMed] [Google Scholar]
  4. Clayton R. K. An analysis of the relations between fluorescence and photochemistry during photosynthesis. J Theor Biol. 1967 Feb;14(2):173–186. doi: 10.1016/0022-5193(67)90112-9. [DOI] [PubMed] [Google Scholar]
  5. DUYSENS L. N. The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim Biophys Acta. 1956 Jan;19(1):1–12. doi: 10.1016/0006-3002(56)90380-8. [DOI] [PubMed] [Google Scholar]
  6. Goedheer J. C. Energy transfer from carotenoids to chlorophyll in blue-green, red and green algae and greening bean leaves. Biochim Biophys Acta. 1969 Feb 25;172(2):252–265. doi: 10.1016/0005-2728(69)90068-1. [DOI] [PubMed] [Google Scholar]
  7. Herron H. A., Mauzerall D. M. The light saturation curve of photosynthesis. Biochim Biophys Acta. 1970;205(2):312–314. doi: 10.1016/0005-2728(70)90262-8. [DOI] [PubMed] [Google Scholar]
  8. Hudock G. A., Levine R. P. Regulation of Photosynthesis in Chlamydomonas reinhardi. Plant Physiol. 1964 Nov;39(6):889–897. doi: 10.1104/pp.39.6.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Malkin S. Theoretical analysis of the enhancement effect in photosynthesis evidence for the "spill-over" model. Biophys J. 2008 Dec 31;7(6):629–649. doi: 10.1016/S0006-3495(67)86613-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stern A. I., Schiff J. A., Epstein H. T. Studies of Chloroplast Development in Euglena. V. Pigment Biosynthesis, Photosynthetic Oxygen Evolution and Carbon Dioxide Fixation during Chloroplast Development. Plant Physiol. 1964 Mar;39(2):220–226. doi: 10.1104/pp.39.2.220. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES