Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1972 Jul;50(1):161–165. doi: 10.1104/pp.50.1.161

Biochemical and Biophysical Characteristics of a Photosynthetic Mutant of Euglena gracilis Blocked in Photosystem II 1,2

Faye D Schwelitz 1,2,3, R A Dilley 1,2, F L Crane 1,2
PMCID: PMC367334  PMID: 16658114

Abstract

A photosynthetic mutant of Euglena gracilis, Z strain, thought to be blocked in the electron transport chain between the two photosystems and to have a missing or nonfunctional primary acceptor for photosystem II, was further studied and characterized. The data from low temperature fluorescence spectra, delayed light emission, and electron paramagnetic resonance support the previous work.

The mutant was shown to lack plastoquinone A and possibly cytochrome b559 but to possess plastoquinone B and a higher complement of carotenoids, especially xanthophylls, than the wild type.

The results are consistent with the postulated role of plastoquinone as the primary electron acceptor for photosystem II and as responsible for the electron paramagnetic resonance signal II. The abundance of xanthophylls in the mutant can be explained by the protective role of carotenoids against photosensitized reactions.

Full text

PDF
161

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAMJI M. S., KRINSKY N. I. CAROTENOID DE-EPOXIDATIONS IN ALGAE. II. ENZYMATIC CONVERSION OF ANTHERAXANTHIN TO ZEAXANTHIN. J Biol Chem. 1965 Jan;240:467–470. [PubMed] [Google Scholar]
  3. Barr R., Henninger M. D., Crane F. L. Comparative Studies on Plastoquinone II. Analysis for Plastoquinones A, B, C, and D. Plant Physiol. 1967 Sep;42(9):1246–1254. doi: 10.1104/pp.42.9.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bendall D. S., Sofrová D. Reactions at 77 degrees K in photosystem 2 of green plants. Biochim Biophys Acta. 1971 Jun 15;234(3):371–380. doi: 10.1016/0005-2728(71)90204-0. [DOI] [PubMed] [Google Scholar]
  5. Bishop N. I. THE REACTIVITY OF A NATURALLY OCCURRING QUINONE (Q-255) IN PHOTOCHEMICAL REACTIONS OF ISOLATED CHLOROPLASTS. Proc Natl Acad Sci U S A. 1959 Dec;45(12):1696–1702. doi: 10.1073/pnas.45.12.1696. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bishop N. I., Wong J. Observations on photosystem II mutants of Scenedesmus: pigments and proteinaceous components of the chloroplasts. Biochim Biophys Acta. 1971 Jun 15;234(3):433–445. doi: 10.1016/0005-2728(71)90210-6. [DOI] [PubMed] [Google Scholar]
  7. Boardman N. K., Anderson J. M., Hiller R. G. Photooxidation of cytochromes in leaves and chloroplasts at liquid-nitrogen temperature. Biochim Biophys Acta. 1971 Apr 6;234(1):126–136. doi: 10.1016/0005-2728(71)90137-x. [DOI] [PubMed] [Google Scholar]
  8. Böhme H., Cramer W. A. Plastoquinone mediates electron transport between cytochrome b-559 and cytochrome f in spinach chloroplasts. FEBS Lett. 1971 Jul 8;15(5):349–351. doi: 10.1016/0014-5793(71)80331-9. [DOI] [PubMed] [Google Scholar]
  9. Erixon K., Butler W. L. The relationship between Q, C- 550 and cytochrome b 559 in photoreactions at -196 degrees in chloroplasts. Biochim Biophys Acta. 1971 Jun 15;234(3):381–389. doi: 10.1016/0005-2728(71)90205-2. [DOI] [PubMed] [Google Scholar]
  10. Kohl D. H., Wood P. M. On the Molecular Identity of ESR Signal II Observed in Photosynthetic Systems: The Effect of Heptane Extraction and Reconstitution With Plastoquinone and Deuterated Plastoquinone. Plant Physiol. 1969 Oct;44(10):1439–1445. doi: 10.1104/pp.44.10.1439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lavorel J. Fluorescence Properties of Wild-Type Chlamydomonas reinhardi and Three Mutant Strains Having Impaired Photosynthesis. Plant Physiol. 1968 Jul;43(7):1049–1055. doi: 10.1104/pp.43.7.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mollenhauer H. H., Evans W., Kogut C. Dictyosome structure in Euglena gracilis. J Cell Biol. 1968 May;37(2):579–583. doi: 10.1083/jcb.37.2.579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Rosenberg A., Gouaux J. Quantitative and compositional changes in monogalactosyl and digalactosyl diglycerides during light-induced formation of chloroplasts in Euglena gracilis. J Lipid Res. 1967 Mar;8(2):80–83. [PubMed] [Google Scholar]
  14. Russell G. K., Lyman H., Heath R. L. Absence of fluorescence quenching in a photosynthetic mutant of Euglena gracilis. Plant Physiol. 1969 Jun;44(6):929–931. doi: 10.1104/pp.44.6.929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Russell G. K., Lyman H. Isolation of mutants of Euglena gracilis with impaired photosynthesis. Plant Physiol. 1968 Aug;43(8):1284–1290. doi: 10.1104/pp.43.8.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Schmidt-Mende P., Rumberg B. Zur Plastochinonreduktion bei der Photosynthese. Z Naturforsch B. 1968 Feb;23(2):225–228. [PubMed] [Google Scholar]
  17. Stiehl H. H., Witt H. T. Die kurzzeitigen ultravioletten Differenzspektren bei der Photosynthese. Z Naturforsch B. 1968 Feb;23(2):220–224. [PubMed] [Google Scholar]
  18. Stiehl H. H., Witt H. T. Quantitative treatment of the function of plastoquinone in phostosynthesis. Z Naturforsch B. 1969 Dec;24(12):1588–1598. doi: 10.1515/znb-1969-1219. [DOI] [PubMed] [Google Scholar]
  19. Takayama K., MacLennan D. H., Tzagoloff A., Stoner C. D. Studies on the electron transfer system. LXVII. Polyacrylamide gel electrophoresis of the mitochondrial electron transfer complexes. Arch Biochem Biophys. 1966 Apr;114(1):223–230. doi: 10.1016/0003-9861(66)90324-9. [DOI] [PubMed] [Google Scholar]
  20. Vernon L. P., Shaw E. R. Oxidation of 1,5-diphenylcarbazide as a measure of photosystem 2 activity in subchloroplast fragments. Biochem Biophys Res Commun. 1969 Sep 10;36(6):878–884. doi: 10.1016/0006-291x(69)90285-x. [DOI] [PubMed] [Google Scholar]
  21. WEAVER E. C. Possible interpretation of the slow-decaying EPR signal in algal suspensions. Arch Biochem Biophys. 1962 Oct;99:193–196. doi: 10.1016/0003-9861(62)90262-x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES