Abstract
Five blue-green and one red algal species produced carbon monoxide during photosynthetic growth. The blue-green algae synthesized CO and phycocyanobilin in equimolar quantities at identical rates. The red alga, Porphyridium cruentum, incorporated Δ-aminolevulinic acid-5-14C into phycoerythrobilin and CO. The ratio of the specific radioactivity of phycoerythrobilin to that of CO, and the kinetics and stoichiometry of phycocyanobilin and CO formation suggest that linear tetrapyrroles in plants are derived by the porphyrin pathway via the intermediate formation of heme. The similarity between bile pigment production in algae and in mammalian systems is discussed.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chapman D. J., Cole W. J., Siegelman H. W. Chromophores of allophycocyanin and R-phycocyanin. Biochem J. 1967 Dec;105(3):903–905. doi: 10.1042/bj1050903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Coburn R. F., Williams W. J., White P., Kahn S. B. The production of carbon monoxide from hemoglobin in vivo. J Clin Invest. 1967 Mar;46(3):346–356. doi: 10.1172/JCI105536. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole W. J., Chapman D. J., Siegelman H. W. The structure and properties of phycocyanobilin and related bilatrienes. Biochemistry. 1968 Aug;7(8):2929–2935. doi: 10.1021/bi00848a033. [DOI] [PubMed] [Google Scholar]
- Crespi H. L., Smith U., Katz J. J. Phycocyanobilin. Structure and exchange studies by nuclear magnetic resonance and its mode of attachment in phycocyanin. A model for phytochrome. Biochemistry. 1968 Jun;7(6):2232–2242. doi: 10.1021/bi00846a028. [DOI] [PubMed] [Google Scholar]
- Ibrahim G. W., Schwartz S., Watson C. J. Early labeling of bilirubin from glycine and delta-aminolevulinic acid in bile fistula dogs, with special reference to stimulated versus suppressed erythropoiesis. Metabolism. 1966 Dec;15(12):1129–1139. doi: 10.1016/0026-0495(66)90103-x. [DOI] [PubMed] [Google Scholar]
- LEIBO S. P., JONES R. F. FREEZING OF THE CHROMOPROTEIN PHYCOERYTHRIN FROM THE RED ALGA PORPHYRIDIUM CRUENTUM. Arch Biochem Biophys. 1964 Jul 20;106:78–88. doi: 10.1016/0003-9861(64)90159-6. [DOI] [PubMed] [Google Scholar]
- Landaw S. A., Callahan E. W., Jr, Schmid R. Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide. J Clin Invest. 1970 May;49(5):914–925. doi: 10.1172/JCI106311. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loewus M. W., Delwiche C. C. Carbon Monoxide Production by Algae. Plant Physiol. 1963 Jul;38(4):371–374. doi: 10.1104/pp.38.4.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MYERS J., KRATZ W. A. Relation between pigment content and photosynthetic characteristics in a blue-green algae. J Gen Physiol. 1955 Sep 20;39(1):11–22. doi: 10.1085/jgp.39.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- OSTROW J. D., JANDL J. H., SCHMID R. The formation of bilirubin from hemoglobin in vivo. J Clin Invest. 1962 Aug;41:1628–1637. doi: 10.1172/JCI104620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PETRYKA Z., NICHOLSON D. C., GRAY C. H. Isomeric bile pigments as products of the in vitro fission of haemin. Nature. 1962 Jun 16;194:1047–1048. doi: 10.1038/1941047a0. [DOI] [PubMed] [Google Scholar]
- Siegel S. M., Renwick G., Rosen L. A. Formation of Carbon Monoxide during Seed Germination and Seedling Growth. Science. 1962 Aug 31;137(3531):683–684. doi: 10.1126/science.137.3531.683. [DOI] [PubMed] [Google Scholar]
- Tenhunen R., Marver H. S., Schmid R. Microsomal heme oxygenase. Characterization of the enzyme. J Biol Chem. 1969 Dec 10;244(23):6388–6394. [PubMed] [Google Scholar]
- Tenhunen R., Marver H. S., Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):748–755. doi: 10.1073/pnas.61.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troxler R. F. An inexpensive technique for measuring carbon monoxide formation in plants. Plant Physiol. 1971 Sep;48(3):376–378. doi: 10.1104/pp.48.3.376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troxler R. F., Bogorad L. Studies on the formation of phycocyanin, porphyrins, and a blue phycobilin by wild-type and mutant strains of Cyanidium caldarium. Plant Physiol. 1966 Mar;41(3):491–499. doi: 10.1104/pp.41.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Troxler R. F., Brown A., Lester R., White P. Bile pigment formation in plants. Science. 1970 Jan 9;167(3915):192–193. doi: 10.1126/science.167.3915.192. [DOI] [PubMed] [Google Scholar]
- Troxler R. F., Lester R. Biosynthesis of phycocyanobilin. Biochemistry. 1967 Dec;6(12):3840–3846. doi: 10.1021/bi00864a030. [DOI] [PubMed] [Google Scholar]
- WESTLAKE D. W., ROXBURGH J. M., TALBOT G. Microbial production of carbon monoxide from flavonoids. Nature. 1961 Feb 11;189:510–511. doi: 10.1038/189510a0. [DOI] [PubMed] [Google Scholar]
- WILKS S. S. Carbon monoxide in green plants. Science. 1959 Apr 10;129(3354):964–966. doi: 10.1126/science.129.3354.964. [DOI] [PubMed] [Google Scholar]
