Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Jan;51(1):158–173. doi: 10.1104/pp.51.1.158

The Structure of Plant Cell Walls

I. The Macromolecular Components of the Walls of Suspension-cultured Sycamore Cells with a Detailed Analysis of the Pectic Polysaccharides 1

Kenneth W Talmadge a,2, Kenneth Keegstra a,3, Wolfgang D Bauer a,4, Peter Albersheim a,5
PMCID: PMC367375  PMID: 16658279

Abstract

This is the first in a series of papers dealing with the structure of cell walls isolated from suspension-cultured sycamore cells (Acer pseudoplatanus). These studies have been made possible by the availability of purified hydrolytic enzymes and by recent improvements in the techniques of methylation analysis. These techniques have permitted us to identify and quantitate the macromolecular components of sycamore cell walls. These walls are composed of 10% arabinan, 2% 3,6-linked arabinogalactan, 23% cellulose, 9% oligo-arabinosides (attached to hydroxyproline), 8% 4-linked galactan, 10% hydroxyproline-rich protein, 16% rhamnogalacturonan, and 21% xyloglucan.

The structures of the pectic polymers (the neutral arabinan, the neutral galactan, and the acidic rhamnogalacturonan) were obtained, in part, by methylation analysis of fragments of these polymers which were released from the sycamore walls by the action of a highly purified endopolygalacturonase. The data suggest a branched arabinan and a linear 4-linked galactan occurring as side chains on the rhamnogalacturonan. Small amounts or pieces of a xyloglucan, the wall hemicellulose, appear to be covalently linked to some of the galactan chains. Thus, the galactan appears to serve as a bridge between the xyloglucan and rhamnogalacturonan components of the wall.

The rhamnogalacturonan consists of an α-(1 → 4)-linked galacturonan chain which is interspersed with 2-linked rhamnosyl residues. The rhamnosyl residues are not randomly distributed in the chain but probably occur in units of rhamnosyl- (1 → 4)-galacturonosyl- (1 → 2)-rhamnosyl. This sequence appears to alternate with a homogalacturonan sequence containing approximately 8 residues of 4-linked galacturonic acid. About half of the rhamnosyl residues are branched, having a substituent attached to carbon 4. This is likely to be the site of attachment of the 4-linked galactan.

The hydroxyprolyl oligo-arabinosides of the hydroxyproline-rich glycoprotein contain 3-linked, 2-linked, and terminal arabinosyl residues. The structure of the hydroxyprolyl oligo-arabinosides deduced from our methylation studies agrees with the structure reported for similar oligosaccharides.

Full text

PDF
158

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON B., HOFFMAN P., MEYER K. THE O-SERINE LINKAGE IN PEPTIDES OF CHONDROITIN 4- OR 6-SULFATE. J Biol Chem. 1965 Jan;240:156–167. [PubMed] [Google Scholar]
  2. Adams J. B. Linkage of carbohydrate to hydroxyamino acids in mucopolysaccharides and mucoproteins. Biochem J. 1965 Nov;97(2):345–352. doi: 10.1042/bj0970345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aspinall G. O., Begbie R., Hamilton A., Whyte J. N. Polysaccharides of soy-beans. 3. Extraction and fractionation of polysaccharides from cotyledon meal. J Chem Soc Perkin 1. 1967;11:1065–1070. doi: 10.1039/j39670001065. [DOI] [PubMed] [Google Scholar]
  4. Aspinall G. O., Cottrell I. W., Egan S. V., Morrison I. M., Whyte J. N. Polysaccharides of soy-beans. IV. Partial hydrolysis of the acidic polysaccharide complex from cotyledon meal. J Chem Soc Perkin 1. 1967;11:1071–1080. doi: 10.1039/j39670001071. [DOI] [PubMed] [Google Scholar]
  5. Aspinall G. O. Gums and mucilages. Adv Carbohydr Chem Biochem. 1969;24:333–379. doi: 10.1016/s0065-2318(08)60353-4. [DOI] [PubMed] [Google Scholar]
  6. BARRETT A. J., NORTHCOTE D. H. APPLE FRUIT PECTIC SUBSTANCES. Biochem J. 1965 Mar;94:617–627. doi: 10.1042/bj0940617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. BITTER T., MUIR H. M. A modified uronic acid carbazole reaction. Anal Biochem. 1962 Oct;4:330–334. doi: 10.1016/0003-2697(62)90095-7. [DOI] [PubMed] [Google Scholar]
  8. Bateman D. F., Van Etten H. D. Susceptibility to Enzymatic Degradation of Cell Walls From Bean Plants Resistant and Susceptible to Rhizoctonia solani Kuhn. Plant Physiol. 1969 May;44(5):641–648. doi: 10.1104/pp.44.5.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Bauer W. D., Talmadge K. W., Keegstra K., Albersheim P. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells. Plant Physiol. 1973 Jan;51(1):174–187. doi: 10.1104/pp.51.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. BeMiller J. N. Acid-catalyzed hydrolysis of glycosides. Adv Carbohydr Chem Biochem. 1967;22:25–108. doi: 10.1016/s0096-5332(08)60151-4. [DOI] [PubMed] [Google Scholar]
  11. Becker G. E., Hui P. A., Albersheim P. Synthesis of Extracellular Polysaccharide by Suspensions of Acer Pseudoplatanus Cells. Plant Physiol. 1964 Nov;39(6):913–920. doi: 10.1104/pp.39.6.913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Blake J. D., Richards G. N. An examination of some methods for fractionation of plant hemicelluloses. Carbohydr Res. 1971 Apr;17(2):253–268. doi: 10.1016/s0008-6215(00)82533-1. [DOI] [PubMed] [Google Scholar]
  13. Chrispeels M. J. Synthesis and secretion of hydroxyproline containing macromolecules in carrots. I. Kinetic analysis. Plant Physiol. 1969 Aug;44(8):1187–1193. doi: 10.1104/pp.44.8.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dashek W. V. Synthesis and Transport of Hydroxyproline-rich Components in Suspension Cultures of Sycamore-Maple Cells. Plant Physiol. 1970 Dec;46(6):831–838. doi: 10.1104/pp.46.6.831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. English P. D., Albersheim P. Host-Pathogen Interactions: I. A Correlation Between alpha-Galactosidase Production and Virulence. Plant Physiol. 1969 Feb;44(2):217–224. doi: 10.1104/pp.44.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. English P. D., Jurale J. B., Albersheim P. Host-Pathogen Interactions: II. Parameters Affecting Polysaccharide-degrading Enzyme Secretion by Colletotrichum lindemuthianum Grown in Culture. Plant Physiol. 1971 Jan;47(1):1–6. doi: 10.1104/pp.47.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. English P. D., Maglothin A., Keegstra K., Albersheim P. A Cell Wall-degrading Endopolygalacturonase Secreted by Colletotrichum lindemuthianum. Plant Physiol. 1972 Mar;49(3):293–298. doi: 10.1104/pp.49.3.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  19. Jones T. M., Albersheim P. A gas chromatographic method for the determination of aldose and uronic Acid constituents of plant cell wall polysaccharides. Plant Physiol. 1972 Jun;49(6):926–936. doi: 10.1104/pp.49.6.926. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Karr A. L. Isolation of an enzyme system which will catalyze the glycosylation of extensin. Plant Physiol. 1972 Aug;50(2):275–282. doi: 10.1104/pp.50.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Keegstra K., Talmadge K. W., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: III. A Model of the Walls of Suspension-cultured Sycamore Cells Based on the Interconnections of the Macromolecular Components. Plant Physiol. 1973 Jan;51(1):188–197. doi: 10.1104/pp.51.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rees D. A., Wight N. J. Molecular cohesion in plant cell walls. Methylation analysis of pectic polysaccharides from the cotyledons of white mustard. Biochem J. 1969 Nov;115(3):431–439. doi: 10.1042/bj1150431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
  24. Sandford P. A., Conrad H. E. The structure of the Aerobacter aerogenes A3(S1) polysaccharide. I. A reexamination using improved procedures for methylation analysis. Biochemistry. 1966 May;5(5):1508–1517. doi: 10.1021/bi00869a009. [DOI] [PubMed] [Google Scholar]
  25. Simmons D. A. Stereochemical aspects of antigenic specificity in polysaccharide determinants. Eur J Biochem. 1971 Jan 1;18(1):53–58. doi: 10.1111/j.1432-1033.1971.tb01213.x. [DOI] [PubMed] [Google Scholar]
  26. Stoddart R. W., Barrett A. J., Northcote D. H. Pectic polysaccharides of growing plant tissues. Biochem J. 1967 Jan;102(1):194–204. doi: 10.1042/bj1020194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stoddart R. W., Northcote D. H. Metabolic relationships of the isolated fractions of the pectic substances of actively growing sycamore cells. Biochem J. 1967 Oct;105(1):45–59. doi: 10.1042/bj1050045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TIMELL T. E. WOOD HEMICELLULOSES. I. Adv Carbohydr Chem. 1964;19:247–302. [PubMed] [Google Scholar]
  29. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  30. Updegraff D. M. Semimicro determination of cellulose in biological materials. Anal Biochem. 1969 Dec;32(3):420–424. doi: 10.1016/s0003-2697(69)80009-6. [DOI] [PubMed] [Google Scholar]
  31. Wilson K. The growth of plant cell walls. Int Rev Cytol. 1964;17:1–49. doi: 10.1016/s0074-7696(08)60404-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES