Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1973 Jan;51(1):188–197. doi: 10.1104/pp.51.1.188

The Structure of Plant Cell Walls

III. A Model of the Walls of Suspension-cultured Sycamore Cells Based on the Interconnections of the Macromolecular Components 1

Kenneth Keegstra a,2, Kenneth W Talmadge a,3, W D Bauer a,4, Peter Albersheim a,5
PMCID: PMC367377  PMID: 16658282

Abstract

Degradative enzymes have been used to obtain defined fragments of the isolated cell walls of suspension-cultured sycamore cells. These fragments have been purified and structurally characterized. Fragments released from endopolygalacturonase-pretreated cell walls by a purified endoglucanase and the fragments extracted from these walls by urea and alkali provide evidence for a covalent connection between the xyloglucan and pectic polysaccharides. Fragments released by a protease from endopolygalacturonase-endoglucanase-pretreated cell walls provide evidence for a covalent connection between the pectic polysaccharides and the structural protein of the cell wall. Based on these interconnections and the strong binding which occurs between the xyloglucan and cellulose, a tentative structure of the cell wall is proposed.

Full text

PDF
188

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aspinall G. O. Gums and mucilages. Adv Carbohydr Chem Biochem. 1969;24:333–379. doi: 10.1016/s0065-2318(08)60353-4. [DOI] [PubMed] [Google Scholar]
  2. Aspinall G. O., Molloy J. A., Craig J. W. Extracellular polysaccharides from suspension-cultured sycamore cells. Can J Biochem. 1969 Nov;47(11):1063–1070. doi: 10.1139/o69-170. [DOI] [PubMed] [Google Scholar]
  3. Bauer W. D., Talmadge K. W., Keegstra K., Albersheim P. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells. Plant Physiol. 1973 Jan;51(1):174–187. doi: 10.1104/pp.51.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Blake J. D., Richards G. N. An examination of some methods for fractionation of plant hemicelluloses. Carbohydr Res. 1971 Apr;17(2):253–268. doi: 10.1016/s0008-6215(00)82533-1. [DOI] [PubMed] [Google Scholar]
  5. Dever J. E., Bandurski R. S., Kivilaan A. Partial chemical characterization of corn root cell walls. Plant Physiol. 1968 Jan;43(1):50–56. doi: 10.1104/pp.43.1.50. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ghuysen J. M. Use of bacteriolytic enzymes in determination of wall structure and their role in cell metabolism. Bacteriol Rev. 1968 Dec;32(4 Pt 2):425–464. [PMC free article] [PubMed] [Google Scholar]
  7. Lamport D. T., Miller D. H. Hydroxyproline arabinosides in the plant kingdom. Plant Physiol. 1971 Oct;48(4):454–456. doi: 10.1104/pp.48.4.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lamport D. T. The isolation and partial characterization of hydroxyproline-rich glycopeptides obtained by enzymic degradation of primary cell walls. Biochemistry. 1969 Mar;8(3):1155–1163. doi: 10.1021/bi00831a049. [DOI] [PubMed] [Google Scholar]
  9. Ray P. M. Sugar composition of oat-coleoptile cell walls. Biochem J. 1963 Oct;89(1):144–150. doi: 10.1042/bj0890144. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rees D. A., Wight N. J. Molecular cohesion in plant cell walls. Methylation analysis of pectic polysaccharides from the cotyledons of white mustard. Biochem J. 1969 Nov;115(3):431–439. doi: 10.1042/bj1150431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Rothfield L., Romeo D. Role of lipids in the biosynthesis of the bacterial cell envelope. Bacteriol Rev. 1971 Mar;35(1):14–38. doi: 10.1128/br.35.1.14-38.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stoddart R. W., Barrett A. J., Northcote D. H. Pectic polysaccharides of growing plant tissues. Biochem J. 1967 Jan;102(1):194–204. doi: 10.1042/bj1020194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. THORNBER J. P., NORTHCOTE D. H. Changes in the chemical composition of a cambial cell during its differentiation into xylem and phloem tissue in trees. 3. Xylan, glucomannan and alpha-cellulose fractions. Biochem J. 1962 Feb;82:340–346. doi: 10.1042/bj0820340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Talmadge K. W., Keegstra K., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: I. The Macromolecular Components of the Walls of Suspension-cultured Sycamore Cells with a Detailed Analysis of the Pectic Polysaccharides. Plant Physiol. 1973 Jan;51(1):158–173. doi: 10.1104/pp.51.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Villemez C. L. Characterization of intermediates in plant cell wall biosynthesis. Biochem Biophys Res Commun. 1970 Aug 11;40(3):636–641. doi: 10.1016/0006-291x(70)90951-4. [DOI] [PubMed] [Google Scholar]
  16. WEIDEL W., PELZER H. BAGSHAPED MACROMOLECULES--A NEW OUTLOOK ON BACTERIAL CELL WALLS. Adv Enzymol Relat Areas Mol Biol. 1964;26:193–232. doi: 10.1002/9780470122716.ch5. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES