Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Oct;54(4):454–462. doi: 10.1104/pp.54.4.454

Conceptual Developments in Membrane Transport, 1924-1974

Noe Higinbotham a
PMCID: PMC367434  PMID: 16658909

Full text

PDF
454

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson W. P., Hendrix D. L., Higinbotham N. Higher plant cell membrane resistance by a single intracellular electrode method. Plant Physiol. 1974 Jan;53(1):122–124. doi: 10.1104/pp.53.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Biddulph O. MOVEMENT OF RADIOPHOSPHORUS IN BEAN SEEDLINGS. Science. 1939 Apr 28;89(2313):393–394. doi: 10.1126/science.89.2313.393-a. [DOI] [PubMed] [Google Scholar]
  3. Briggs G. E., Petrie A. H. On the application of the Donnan equilibrium to the ionic relations of plant tissues. Biochem J. 1928;22(4):1071–1082. doi: 10.1042/bj0221071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Coster H. G. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of "punch-through". Biophys J. 1965 Sep;5(5):669–686. doi: 10.1016/S0006-3495(65)86745-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Diamond J. M., Wright E. M. Biological membranes: the physical basis of ion and nonelectrolyte selectivity. Annu Rev Physiol. 1969;31:581–646. doi: 10.1146/annurev.ph.31.030169.003053. [DOI] [PubMed] [Google Scholar]
  6. ETHERTON B., HIGINBOTHAM N. Transmembrane potential measurements of cells of higher plants as related to salt uptake. Science. 1960 Feb 12;131(3398):409–410. doi: 10.1126/science.131.3398.409. [DOI] [PubMed] [Google Scholar]
  7. Epstein E., Hagen C. E. A KINETIC STUDY OF THE ABSORPTION OF ALKALI CATIONS BY BARLEY ROOTS. Plant Physiol. 1952 Jul;27(3):457–474. doi: 10.1104/pp.27.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Etherton B. Vacuolar and Cytoplasmic Potassium Concentrations in Pea Roots in Relation to Cell-to-Medium Electrical Potentials. Plant Physiol. 1968 May;43(5):838–840. doi: 10.1104/pp.43.5.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Findlay G. P., Hope A. B., Walker N. A. Quantization of a flux ratio in charophytes? Biochim Biophys Acta. 1971 Mar 9;233(1):155–162. doi: 10.1016/0005-2736(71)90368-3. [DOI] [PubMed] [Google Scholar]
  10. Fisher J. D., Hansen D., Hodges T. K. Correlation between ion fluxes and ion-stimulated adenosine triphosphatase activity of plant roots. Plant Physiol. 1970 Dec;46(6):812–814. doi: 10.1104/pp.46.6.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garrahan P. J., Glynn I. M. The incorporation of inorganic phosphate into adenosine triphosphate by reversal of the sodium pump. J Physiol. 1967 Sep;192(1):237–256. doi: 10.1113/jphysiol.1967.sp008298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Glynn I. M., Hoffman J. F., Lew V. L. Some "partial reactions" of the sodium pump. Philos Trans R Soc Lond B Biol Sci. 1971 Aug 20;262(842):91–102. doi: 10.1098/rstb.1971.0080. [DOI] [PubMed] [Google Scholar]
  13. Goldman D. E. POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES. J Gen Physiol. 1943 Sep 20;27(1):37–60. doi: 10.1085/jgp.27.1.37. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. HODGKIN A. L., KATZ B. The effect of sodium ions on the electrical activity of giant axon of the squid. J Physiol. 1949 Mar 1;108(1):37–77. doi: 10.1113/jphysiol.1949.sp004310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HODGKIN A. L., KEYNES R. D. Active transport of cations in giant axons from Sepia and Loligo. J Physiol. 1955 Apr 28;128(1):28–60. doi: 10.1113/jphysiol.1955.sp005290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HOGEBOOM G. H., SCHNEIDER W. C., PALLADE G. E. Cytochemical studies of mammalian tissues; isolation of intact mitochondria from rat liver; some biochemical properties of mitochondria and submicroscopic particulate material. J Biol Chem. 1948 Feb;172(2):619–635. [PubMed] [Google Scholar]
  17. Hendrix D. L., Higinbotham N. Effects of Filipin and Cholesterol on K Movement in Etiolated Stem Cells of Pisum sativum L. Plant Physiol. 1973 Aug;52(2):93–97. doi: 10.1104/pp.52.2.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Higinbotham N., Hanson J. The Relation of External Rubidium Concentration to Amounts and Rates of Uptake by Excised Potato Tuber Tissue. Plant Physiol. 1955 Mar;30(2):105–112. doi: 10.1104/pp.30.2.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Higinbotham N. The Possible Role of Adenosine Triphosphate in Rubidium Absorption as Revealed by the Influence of External Phosphate, Dinitrophenol and Arsenate. Plant Physiol. 1959 Nov;34(6):645–650. doi: 10.1104/pp.34.6.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hinke J. A. Solvent water for electrolytes in the muscle fiber of the giant barnacle. J Gen Physiol. 1970 Oct;56(4):521–541. doi: 10.1085/jgp.56.4.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hoagland D. R., Hibbard P. L., Davis A. R. THE INFLUENCE OF LIGHT, TEMPERATURE, AND OTHER CONDITIONS ON THE ABILITY OF NITELLA CELLS TO CONCENTRATE HALOGENS IN THE CELL SAP. J Gen Physiol. 1926 Sep 20;10(1):121–146. doi: 10.1085/jgp.10.1.121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hodges T. K., Leonard R. T., Bracker C. E., Keenan T. W. Purification of an ion-stimulated adenosine triphosphatase from plant roots: association with plasma membranes. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3307–3311. doi: 10.1073/pnas.69.11.3307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jacobson L., Overstreet R., King H. M., Handley R. A STUDY OF POTASSIUM ABSORPTION BY BARLEY ROOTS. Plant Physiol. 1950 Oct;25(4):639–647. doi: 10.1104/pp.25.4.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jagendorf A. T., Uribe E. Photophosphorylation and the chemi-osmotic hypothesis. Brookhaven Symp Biol. 1966;19:215–245. [PubMed] [Google Scholar]
  25. Jenny H., Overstreet R. Contact Effects between Plant Roots and Soil Colloids. Proc Natl Acad Sci U S A. 1938 Sep;24(9):384–392. doi: 10.1073/pnas.24.9.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kylin A., Gee R. Adenosine Triphosphatase Activities in Leaves of the Mangrove Avicennia nitida Jacq: Influence of Sodium to Potassium Ratios and Salt Concentrations. Plant Physiol. 1970 Feb;45(2):169–172. doi: 10.1104/pp.45.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. LING G., GERARD R. W. The normal membrane potential of frog sartorius fibers. J Cell Physiol. 1949 Dec;34(3):383–396. doi: 10.1002/jcp.1030340304. [DOI] [PubMed] [Google Scholar]
  28. MACROBBIE E. A., DAINTY J. Ion transport in Nitellopsis obtusa. J Gen Physiol. 1958 Nov 20;42(2):335–353. doi: 10.1085/jgp.42.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Magnuson J. A., Magnuson N. S., Hendrix D. L., Higinbotham N. Nuclear magnetic resonance studies of sodium and potassium in etiolated pea stem. Biophys J. 1973 Aug;13(8):763–771. doi: 10.1016/S0006-3495(73)86022-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Osterhout W. J., Damon E. B., Jacques A. G. DISSIMILARITY OF INNER AND OUTER PROTOPLASMIC SURFACES IN VALONIA. J Gen Physiol. 1927 Nov 20;11(2):193–205. doi: 10.1085/jgp.11.2.193. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Osterhout W. J. SOME ASPECTS OF BIOELECTRICAL PHENOMENA. J Gen Physiol. 1927 Sep 20;11(1):83–99. doi: 10.1085/jgp.11.1.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pierce W. S., Higinbotham N. Compartments and Fluxes of K, NA, and CL in Avena Coleoptile Cells. Plant Physiol. 1970 Nov;46(5):666–673. doi: 10.1104/pp.46.5.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. ROBERTSON R. N., WILKINS M. J., WEEKS D. C. Studies in the metabolism of plant cells. IX. The effects of 2,4-dinitrophenol on salt accumulation and salt respiration. Aust J Sci Res B. 1951 Aug;4(3):248–264. doi: 10.1071/bi9510248. [DOI] [PubMed] [Google Scholar]
  34. SHANES A. M. Electrochemical aspects of physiological and pharmacological action in excitable cells. I. The resting cell and its alteration by extrinsic factors. Pharmacol Rev. 1958 Mar;10(1):59–164. [PubMed] [Google Scholar]
  35. Saddler H. D. The membrane potential of Acetabularia mediterranea. J Gen Physiol. 1970 Jun;55(6):802–821. doi: 10.1085/jgp.55.6.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Slayman C. L. Electrical properties of Neurospora crassa. Respiration and the intracellular potential. J Gen Physiol. 1965 Sep;49(1):93–116. doi: 10.1085/jgp.49.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Slayman C. L., Long W. S., Lu C. Y. The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J Membr Biol. 1973;14(4):305–338. doi: 10.1007/BF01868083. [DOI] [PubMed] [Google Scholar]
  38. Spanswick R. M. Evidence for an electrogenic ion pump in Nitella translucens. I. The effects of pH, K + , Na + , light and temperature on the membrane potential and resistance. Biochim Biophys Acta. 1972 Oct 23;288(1):73–89. doi: 10.1016/0005-2736(72)90224-6. [DOI] [PubMed] [Google Scholar]
  39. Thomas W. THE EFFECT OF COLLOIDAL SILICA ON THE ABSORPTION OF PHOSPHORIC ACID BY PLANTS. Science. 1930 Apr 18;71(1842):422–423. doi: 10.1126/science.71.1842.422. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES