Abstract
Sonicated lipid micelles, formed from phospholipids isolated from yolks of fresh hen eggs, were used as a model membrane system for studying the effects of several surfactants on membrane properties. The interactions of the surfactants with the model system were followed through the fluorescence of the hydrophobic probe l-anilino-8-naphthalenesulfonate. The surfactants investigated were polyoxyethylene sorbitan monolaurate (Tween 20), polyoxyethylene thioether (Sterox SK), mono-calcium salt of polymerized aryl alkyl sulfonic acids (Daxad 21), and alkylbenzyl quaternary ammonium halide (AHCO DD 50). All surfactants enhanced fluorescence of the membrane-bound probe, and the degree of this enhancement correlated with the previously established phytotoxicity of these substances. The results indicate that surfactants can produce distinct changes in artificial phospholipid membranes and suggest that this lipid interaction may account for altered membrane permeability characteristics in surfactant-treated plants. The effects are observable for surfactant concentrations as low as 0.0001% (w/v), representing an approximate 10-fold increase in sensitivity for detecting surfactant effects compared with previous results on permeability changes in isolated plant cells.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Colley C. M., Metcalfe J. C. The localisation of small molecules in lipid bilayers. FEBS Lett. 1972 Aug 15;24(3):241–246. doi: 10.1016/0014-5793(72)80364-8. [DOI] [PubMed] [Google Scholar]
- Faucon J. F., Lussan C. Aliphatic chain transitions of phospholipid vesicles and phospholipid dispersions determined by polarization of fluorescence. Biochim Biophys Acta. 1973 May 25;307(3):459–466. doi: 10.1016/0005-2736(73)90292-7. [DOI] [PubMed] [Google Scholar]
- Flanagan M. T., Hesketh T. R. Electrostatic interactions in the binding of fluorescent probes to lipid membranes. Biochim Biophys Acta. 1973 Mar 29;298(3):535–545. doi: 10.1016/0005-2736(73)90072-2. [DOI] [PubMed] [Google Scholar]
- Haydon D. A., Myers V. B. Surface charge, surface dipoles and membrane conductance. Biochim Biophys Acta. 1973 May 25;307(3):429–443. doi: 10.1016/0005-2736(73)90289-7. [DOI] [PubMed] [Google Scholar]
- Howard R. E., Burton R. M. Thin lipid membranes with aqueous interfaces: apparatus designs and methods of study. J Am Oil Chem Soc. 1968 Apr;45(4):202–229. doi: 10.1007/BF02652417. [DOI] [PubMed] [Google Scholar]
- Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969 Jan;8(1):344–352. doi: 10.1021/bi00829a048. [DOI] [PubMed] [Google Scholar]
- Jackson P. C., Taylor J. M. Effects of organic acids on ion uptake and retention in barley roots. Plant Physiol. 1970 Oct;46(4):538–542. doi: 10.1104/pp.46.4.538. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jackson W. T. Use of Carbowaxes (Polyethylene Glycols) as Osmotic Agents. Plant Physiol. 1962 Jul;37(4):513–519. doi: 10.1104/pp.37.4.513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Neumann J., Jagendorf A. Uncoupling photophosphorylation by detergents. Biochim Biophys Acta. 1965 Nov 29;109(2):382–389. doi: 10.1016/0926-6585(65)90165-2. [DOI] [PubMed] [Google Scholar]
- Stryer L. The interaction of a naphthalene dye with apomyoglobin and apohemoglobin. A fluorescent probe of non-polar binding sites. J Mol Biol. 1965 Sep;13(2):482–495. doi: 10.1016/s0022-2836(65)80111-5. [DOI] [PubMed] [Google Scholar]
- Vanderkooi J., Martonosi A. Sarcoplasmic reticulum. 8. Use of 8-anilino-1-naphthalene sulfonate as conformational probe on biological membranes. Arch Biochem Biophys. 1969 Aug;133(1):153–163. doi: 10.1016/0003-9861(69)90499-8. [DOI] [PubMed] [Google Scholar]
- Zingsheim H. P., Haydon D. A. Fluorescence spectroscopy of planar black lipid membranes. Probe adsorption and quantum yield determination. Biochim Biophys Acta. 1973 Apr 16;298(4):755–768. doi: 10.1016/0005-2736(73)90380-5. [DOI] [PubMed] [Google Scholar]
