Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Oct;54(4):556–559. doi: 10.1104/pp.54.4.556

Activation of Ribulose 1,5-Diphosphate Carboxylase by Nicotinamide Adenine Dinucleotide Phosphate and Other Chloroplast Metabolites 1

Douglas K Chu a, James A Bassham a
PMCID: PMC367452  PMID: 16658927

Abstract

Ribulose 1,5-diphosphate carboxylase, when activated by preincubation with 10 mm MgCl2 and 1 mm bicarbonate in the absence of ribulose 1,5-diphosphate, can be further activated about 170% with 0.5 mm NADPH present in the preincubation mixture. NADP+, NADH, and NAD+ are ineffective. The activation by NADPH is comparable to that previously seen with 0.05 to 0.10 mm 6-phosphogluconate in that these specific preincubation conditions are required, but the effects of NADPH and 6-phosphogluconate are not additive. Moreover, where higher concentrations of 6-phosphogluconate inhibited the enzyme, higher concentrations of NADPH give a greater activation, saturating at about 1 mm and 200%. Under the specified conditions of preincubation, fructose 1,6-diphosphate has an activation curve similar to that of 6-phosphogluconate, peaking at 0.1 mm and 70%. Above this level, activation decreases, and inhibition is seen at still higher concentrations. Other metabolites tested produced smaller or no effects on the enzyme activity assayed under these conditions. When either reduced NADP or 6-phosphogluconate are present in the preincubation mixture, it becomes possible to determine the Km for bicarbonate using a Lineweaver-Burk plot, and the Km for bicarbonate under these conditions is 2.8 mm, corresponding to 0.3% CO2 at pH 7.8 and 25 C.

Full text

PDF
556

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avron M., Gibbs M. Carbon dioxide fixation in the light and in the dark by isolated spinach chloroplasts. Plant Physiol. 1974 Feb;53(2):140–143. doi: 10.1104/pp.53.2.140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassham J. A., Krause G. H. Free energy changes and metabolic regulation in steady-state photosynthetic carbon reduction. Biochim Biophys Acta. 1969 Oct 21;189(2):207–221. doi: 10.1016/0005-2728(69)90048-6. [DOI] [PubMed] [Google Scholar]
  3. Bowes G., Ogren W. L. Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem. 1972 Apr 10;247(7):2171–2176. [PubMed] [Google Scholar]
  4. Chu D. K., Bassham J. A. Activation and inhibition of ribulose 1,5-diphosphate carboxylase by 6-phosphogluconate. Plant Physiol. 1973 Oct;52(4):373–379. doi: 10.1104/pp.52.4.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chu D. K., Bassham J. A. Inhibition of ribulose 1,5-diphosphate carboxylase by 6-phosphogluconate. Plant Physiol. 1972 Aug;50(2):224–227. doi: 10.1104/pp.50.2.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Krause G. H., Bassham J. A. Induction of respiratory metabolism in illuminated Chlorella pyrenoidosa and isolated spinach chloroplasts by the addition of vitamin K5. Biochim Biophys Acta. 1969 Apr 8;172(3):553–565. doi: 10.1016/0005-2728(69)90151-0. [DOI] [PubMed] [Google Scholar]
  7. Lin D. C., Novel P. S. Control of photosynthesis by Mg 2+ . Arch Biochem Biophys. 1971 Aug;145(2):622–632. doi: 10.1016/s0003-9861(71)80022-x. [DOI] [PubMed] [Google Scholar]
  8. Nobel P. S. Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim Biophys Acta. 1969 Jan 14;172(1):134–143. doi: 10.1016/0005-2728(69)90098-x. [DOI] [PubMed] [Google Scholar]
  9. PON N. G., RABIN B. R., CALVIN M. MECHANISM OF THE CARBOXYDISMUTASE REACTION. I. THE EFFECT OF PRELIMINARY INCUBATION OF SUBSTRATES, METAL ION AND ENZYME ON ACTIVITY. Biochem Z. 1963;338:7–19. [PubMed] [Google Scholar]
  10. RACKER E. The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulose diphosphate carboxylase. Arch Biochem Biophys. 1957 Jul;69:300–310. doi: 10.1016/0003-9861(57)90496-4. [DOI] [PubMed] [Google Scholar]
  11. Tabita F. R., McFadden B. A. Regulation of ribulose-1,5-diphosphate carboxylase by 6-phospho-D-gluconate. Biochem Biophys Res Commun. 1972 Sep 5;48(5):1153–1159. doi: 10.1016/0006-291x(72)90831-5. [DOI] [PubMed] [Google Scholar]
  12. WEISSBACH A., HORECKER B. L., HURWITZ J. The enzymatic formation of phosphoglyceric acid from ribulose diphosphate and carbon dioxide. J Biol Chem. 1956 Feb;218(2):795–810. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES