Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1974 Oct;54(4):575–578. doi: 10.1104/pp.54.4.575

Effects of Light Intensity and Oxygen on Photosynthesis and Translocation in Sugar Beet 1

Jerome C Servaites a,2, Donald R Geiger a
PMCID: PMC367456  PMID: 16658931

Abstract

The mass transfer rate of 14C-sucrose translocation from sugar beet (Beta vulgaris, L.) leaves was measured over a range of net photosynthesis rates from 0 to 60 milligrams of CO2 decimeters−2 hour−1 under varying conditions of light intensity, CO2 concentration, and O2 concentration. The resulting rate of translocation of labeled photosynthate into total sink tissue was a linear function (slope = 0.18) of the net photosynthesis rate of the source leaf regardless of light intensity (2000, 3700, or 7200 foot-candles), O2 concentration (21% or 1% O2), or CO2 concentration (900 microliters/liter of CO2 to compensation concentration). These data support the theory that the mass transfer rate of translocation under conditions of sufficient sink demand is limited by the net photosynthesis rate or more specifically by sucrose synthesis and this limitation is independent of light intensity per se. The rate of translocation was not saturated even at net photosynthesis rates four times greater than the rate occurring at 300 microliters/liter of CO2, 21% O2, and saturating light intensity.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Geiger D. R., Batey J. W. Translocation of C Sucrose in Sugar Beet during Darkness. Plant Physiol. 1967 Dec;42(12):1743–1749. doi: 10.1104/pp.42.12.1743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Geiger D. R., Saunders M. A., Cataldo D. A. Translocation and accumulation of translocate in the sugar beet petiole. Plant Physiol. 1969 Dec;44(12):1657–1665. doi: 10.1104/pp.44.12.1657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Geiger D. R., Swanson C. A. Evaluation of Selected Parameters in a Sugar Beet Translocation System. Plant Physiol. 1965 Sep;40(5):942–947. doi: 10.1104/pp.40.5.942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Geiger D. R., Swanson C. A. Sucrose Translocation in the Sugar Beet. Plant Physiol. 1965 Jul;40(4):685–690. doi: 10.1104/pp.40.4.685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hartt C. E. Light and Translocation of C in Detached Blades of Sugarcane. Plant Physiol. 1965 Jul;40(4):718–724. doi: 10.1104/pp.40.4.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartt C. E. Translocation of carbon-14 in sugarcane plants supplied with or deprived of phosphorus. Plant Physiol. 1972 Apr;49(4):569–571. doi: 10.1104/pp.49.4.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Liu P., Wallace D. H., Ozbun J. L. Influence of Translocation of Photosynthetic Efficiency of Phaseolus vulgaris L. Plant Physiol. 1973 Nov;52(5):412–415. doi: 10.1104/pp.52.5.412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ogren W. L., Bowes G. Ribulose diphosphate carboxylase regulates soybean photorespiration. Nat New Biol. 1971 Mar 31;230(13):159–160. doi: 10.1038/newbio230159a0. [DOI] [PubMed] [Google Scholar]
  9. Swanson C. A., Geiger D. R. Time course of low temperature inhibition of sucrose translocation in sugar beets. Plant Physiol. 1967 Jun;42(6):751–756. doi: 10.1104/pp.42.6.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. VERNON L. P., ARONOFF S. Metabolism of soybean leaves. IV. Translocation from soybean leaves. Arch Biochem Biophys. 1952 Apr;36(2):383–398. doi: 10.1016/0003-9861(52)90424-4. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES