Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1986 Feb;6(2):574–585. doi: 10.1128/mcb.6.2.574

A distinct glucocorticoid hormone response regulates phosphoprotein maturation in rat hepatoma cells.

K Karlsen, A K Vallerga, J Hone, G L Firestone
PMCID: PMC367548  PMID: 3023857

Abstract

Glucocorticoid hormone-dependent maturation of the mouse mammary tumor virus (MMTV) phosphorylated polyprotein (Pr74) allows experimental access to certain posttranslational regulatory circuits under steroid control in M1.54 cells, an MMTV-infected rat hepatoma cell line. Pulse-chase experiments revealed that [35S]methionine-labeled Pr74 synthesized in uninduced cells could be converted posttranslationally into p24, a stable phosphorylated maturation product, only after 4 h of exposure to 1 microM dexamethasone, a synthetic glucocorticoid. This regulated processing could be prevented by prior exposure, during the chase period, to inhibitors of RNA (actinomycin D) or protein (cycloheximide or puromycin) synthesis. Moreover, half-maximal production of p24 occurred at 10 nM dexamethasone, a concentration that approximated half-maximal receptor binding and stimulation of MMTV transcript synthesis. Kinetic, hormonal, and genetic evidence suggest that p24 expression did not require or result from the overall glucocorticoid-dependent increase in polyprotein concentration. First, 20 h after dexamethasone withdrawal, Pr74 maturation was completely deinduced, whereas the absolute level of this MMTV precursor remained 10-fold over its basal level. Second, progesterone, which competes with dexamethasone for receptor binding, facilitated the regulated production of p24 but prevented the steroid-mediated accumulation of functional MMTV mRNA. Lastly, certain glucocorticoid-responsive variants, derived from M1.54 cells by resistance to complement cytolysis, expressed p24 in the presence or absence of glucocorticoid-induced levels of Pr74. Taken together, our results suggest that the glucocorticoid-regulated maturation of MMTV phosphopolyproteins resulted from an independent hormone response that required normal receptor function and de novo RNA and protein synthesis.

Full text

PDF
574

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barouki R., Finidori J., Chobert M. N., Aggerbeck M., Laperche Y., Hanoune J. Biosynthesis and processing of gamma-glutamyl transpeptidase in hepatoma tissue culture cells. J Biol Chem. 1984 Jun 25;259(12):7970–7974. [PubMed] [Google Scholar]
  2. Baumann H., Firestone G. L., Burgess T. L., Gross K. W., Yamamoto K. R., Held W. A. Dexamethasone regulation of alpha 1-acid glycoprotein and other acute phase reactants in rat liver and hepatoma cells. J Biol Chem. 1983 Jan 10;258(1):563–570. [PubMed] [Google Scholar]
  3. Baxter J. D., Forsham P. H. Tissue effects of glucocorticoids. Am J Med. 1972 Nov;53(5):573–589. doi: 10.1016/0002-9343(72)90154-4. [DOI] [PubMed] [Google Scholar]
  4. Cardiff R. D., Puentes M. J., Young L. J., Smith G. H., Teramoto Y. A., Altrock B. W., Pratt T. S. Serological and biochemical characterization of the mouse mammary tumor virus with localization of p10. Virology. 1978 Mar;85(1):157–167. doi: 10.1016/0042-6822(78)90420-8. [DOI] [PubMed] [Google Scholar]
  5. Chandler V. L., Maler B. A., Yamamoto K. R. DNA sequences bound specifically by glucocorticoid receptor in vitro render a heterologous promoter hormone responsive in vivo. Cell. 1983 Jun;33(2):489–499. doi: 10.1016/0092-8674(83)90430-0. [DOI] [PubMed] [Google Scholar]
  6. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  7. Cousens L., Eskin B. Filter assay method for the estrogen receptor protein: detection of both filled and unfilled estrogen binding sites. Anal Biochem. 1982 Mar 15;121(1):39–48. doi: 10.1016/0003-2697(82)90554-1. [DOI] [PubMed] [Google Scholar]
  8. Docherty K., Steiner D. F. Post-translational proteolysis in polypeptide hormone biosynthesis. Annu Rev Physiol. 1982;44:625–638. doi: 10.1146/annurev.ph.44.030182.003205. [DOI] [PubMed] [Google Scholar]
  9. Donohue T. M., Jr, Barker K. L. Glucose-6-phosphate dehydrogenase. Translational regulation of synthesis and regulation of processing of the enzyme in the uterus by estradiol. Biochim Biophys Acta. 1983 Mar 10;739(2):148–157. doi: 10.1016/0167-4781(83)90024-6. [DOI] [PubMed] [Google Scholar]
  10. Epstein D., Elias-Bishko S., Hershko A. Requirement for protein synthesis in the regulation of protein breakdown in cultured hepatoma cells. Biochemistry. 1975 Nov 18;14(23):5199–5204. doi: 10.1021/bi00694a028. [DOI] [PubMed] [Google Scholar]
  11. Feinstein S. C., Ross S. R., Yamamoto K. R. Chromosomal position effects determine transcriptional potential of integrated mammary tumor virus DNA. J Mol Biol. 1982 Apr 15;156(3):549–565. doi: 10.1016/0022-2836(82)90266-2. [DOI] [PubMed] [Google Scholar]
  12. Firestone G. L., Heath E. C. The cyclic AMP-mediated induction of alkaline phosphatase in mouse L-cells. J Biol Chem. 1981 Feb 10;256(3):1396–1403. [PubMed] [Google Scholar]
  13. Firestone G. L., Payvar F., Yamamoto K. R. Glucocorticoid regulation of protein processing and compartmentalization. Nature. 1982 Nov 18;300(5889):221–225. doi: 10.1038/300221a0. [DOI] [PubMed] [Google Scholar]
  14. Firestone G. L., Yamamoto K. R. Two classes of mutant mammary tumor virus-infected HTC cell with defects in glucocorticoid-regulated gene expression. Mol Cell Biol. 1983 Feb;3(2):149–160. doi: 10.1128/mcb.3.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Geisse S., Scheidereit C., Westphal H. M., Hynes N. E., Groner B., Beato M. Glucocorticoid receptors recognize DNA sequences in and around murine mammary tumour virus DNA. EMBO J. 1982;1(12):1613–1619. doi: 10.1002/j.1460-2075.1982.tb01363.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  17. Goldfeld A. E., Firestone G. L., Shaw P. A., Gluecksohn-Waelsch S. Recessive lethal deletion on mouse chromosome 7 affects glucocorticoid receptor binding activities. Proc Natl Acad Sci U S A. 1983 Mar;80(5):1431–1434. doi: 10.1073/pnas.80.5.1431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hanley J. M., Haugen T. H., Heath E. C. Biosynthesis and processing of rat haptoglobin. J Biol Chem. 1983 Jun 25;258(12):7858–7869. [PubMed] [Google Scholar]
  19. Hendil K. B. Intracellular protein degradation in growing, in density-inhibited, and in serum-restricted fibroblast cultures. J Cell Physiol. 1977 Sep;92(3):353–364. doi: 10.1002/jcp.1040920304. [DOI] [PubMed] [Google Scholar]
  20. Hershko A., Tomkins G. M. Studies on the degradation of tyrosine aminotransferase in hepatoma cells in culture. Influence of the composition of the medium and adenosine triphosphate dependence. J Biol Chem. 1971 Feb 10;246(3):710–714. [PubMed] [Google Scholar]
  21. Ivarie R. D., O'Farrell P. H. The glucocorticoid domain: steroid-mediated changes in the rate of synthesis of rat hepatoma proteins. Cell. 1978 Jan;13(1):41–55. doi: 10.1016/0092-8674(78)90136-8. [DOI] [PubMed] [Google Scholar]
  22. Julius D., Blair L., Brake A., Sprague G., Thorner J. Yeast alpha factor is processed from a larger precursor polypeptide: the essential role of a membrane-bound dipeptidyl aminopeptidase. Cell. 1983 Mar;32(3):839–852. doi: 10.1016/0092-8674(83)90070-3. [DOI] [PubMed] [Google Scholar]
  23. Karin M., Haslinger A., Holtgreve H., Richards R. I., Krauter P., Westphal H. M., Beato M. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature. 1984 Apr 5;308(5959):513–519. doi: 10.1038/308513a0. [DOI] [PubMed] [Google Scholar]
  24. Katz J., Finlay T. H., Tom C., Levitz M. A new hormone-response hydrolase activity in the mouse uterus. Endocrinology. 1980 Dec;107(6):1725–1730. doi: 10.1210/endo-107-6-1725. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Miesfeld R., Okret S., Wikström A. C., Wrange O., Gustafsson J. A., Yamamoto K. R. Characterization of a steroid hormone receptor gene and mRNA in wild-type and mutant cells. Nature. 1984 Dec 20;312(5996):779–781. doi: 10.1038/312779a0. [DOI] [PubMed] [Google Scholar]
  27. Moguilewsky M., Philibert D. RU 38486: potent antiglucocorticoid activity correlated with strong binding to the cytosolic glucocorticoid receptor followed by an impaired activation. J Steroid Biochem. 1984 Jan;20(1):271–276. doi: 10.1016/0022-4731(84)90216-4. [DOI] [PubMed] [Google Scholar]
  28. Moore D. D., Marks A. R., Buckley D. I., Kapler G., Payvar F., Goodman H. M. The first intron of the human growth hormone gene contains a binding site for glucocorticoid receptor. Proc Natl Acad Sci U S A. 1985 Feb;82(3):699–702. doi: 10.1073/pnas.82.3.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Payvar F., DeFranco D., Firestone G. L., Edgar B., Wrange O., Okret S., Gustafsson J. A., Yamamoto K. R. Sequence-specific binding of glucocorticoid receptor to MTV DNA at sites within and upstream of the transcribed region. Cell. 1983 Dec;35(2 Pt 1):381–392. doi: 10.1016/0092-8674(83)90171-x. [DOI] [PubMed] [Google Scholar]
  30. Payvar F., Firestone G. L., Ross S. R., Chandler V. L., Wrange O., Carlstedt-Duke J., Gustafsson J. A., Yamamoto K. R. Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA. J Cell Biochem. 1982;19(3):241–247. doi: 10.1002/jcb.240190305. [DOI] [PubMed] [Google Scholar]
  31. Payvar F., Wrange O., Carlstedt-Duke J., Okret S., Gustafsson J. A., Yamamoto K. R. Purified glucocorticoid receptors bind selectively in vitro to a cloned DNA fragment whose transcription is regulated by glucocorticoids in vivo. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6628–6632. doi: 10.1073/pnas.78.11.6628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Pfahl M. Specific binding of the glucocorticoid-receptor complex to the mouse mammary tumor proviral promoter region. Cell. 1982 Dec;31(2 Pt 1):475–482. doi: 10.1016/0092-8674(82)90140-4. [DOI] [PubMed] [Google Scholar]
  33. Ponta H., Kennedy N., Skroch P., Hynes N. E., Groner B. Hormonal response region in the mouse mammary tumor virus long terminal repeat can be dissociated from the proviral promoter and has enhancer properties. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1020–1024. doi: 10.1073/pnas.82.4.1020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Renkawitz R., Schütz G., von der Ahe D., Beato M. Sequences in the promoter region of the chicken lysozyme gene required for steroid regulation and receptor binding. Cell. 1984 Jun;37(2):503–510. doi: 10.1016/0092-8674(84)90380-5. [DOI] [PubMed] [Google Scholar]
  35. Ringold G. M. Glucocorticoid regulation of mouse mammary tumor virus gene expression. Biochim Biophys Acta. 1979 Dec 19;560(4):487–508. doi: 10.1016/0304-419x(79)90014-3. [DOI] [PubMed] [Google Scholar]
  36. Ringold G. M., Shank P. R., Varmus H. E., Ring J., Yamamoto K. R. Integration and transcription of mouse mammary tumor virus DNA in rat hepatoma cells. Proc Natl Acad Sci U S A. 1979 Feb;76(2):665–669. doi: 10.1073/pnas.76.2.665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ringold G. M., Yamamoto K. R., Bishop J. M., Varmus H. E. Glucocorticoid-stimulated accumulation of mouse mammary tumor virus RNA: increased rate of synthesis of viral RNA. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2879–2883. doi: 10.1073/pnas.74.7.2879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ringold G. M., Yamamoto K. R., Tomkins G. M., Bishop M., Varmus H. E. Dexamethasone-mediated induction of mouse mammary tumor virus RNA: a system for studying glucocorticoid action. Cell. 1975 Nov;6(3):299–305. doi: 10.1016/0092-8674(75)90181-6. [DOI] [PubMed] [Google Scholar]
  39. Samuels H. H., Tomkins G. M. Relation of steroid structure to enzyme induction in hepatoma tissue culture cells. J Mol Biol. 1970 Aug 28;52(1):57–74. doi: 10.1016/0022-2836(70)90177-4. [DOI] [PubMed] [Google Scholar]
  40. Scheidereit C., Beato M. Contacts between hormone receptor and DNA double helix within a glucocorticoid regulatory element of mouse mammary tumor virus. Proc Natl Acad Sci U S A. 1984 May;81(10):3029–3033. doi: 10.1073/pnas.81.10.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Seifert S. C., Gelehrter T. D. Isolation of rat hepatoma cell variants selectively resistant to dexamethasone inhibition of plasminogen activator. J Cell Physiol. 1979 Jun;99(3):333–341. doi: 10.1002/jcp.1040990308. [DOI] [PubMed] [Google Scholar]
  42. Starr C. M., Lucas J. J. Regulation of dolichyl phosphate-mediated protein glycosylation: estrogen effects on glucosyl transfers in oviduct membranes. Arch Biochem Biophys. 1985 Feb 15;237(1):261–270. doi: 10.1016/0003-9861(85)90277-2. [DOI] [PubMed] [Google Scholar]
  43. Thompson E. B., Granner D. K., Gelehrter T., Erickson J., Hager G. L. Unlinked control of multiple glucocorticoid-induced processes in HTC cells. Mol Cell Endocrinol. 1979 Sep;15(3):135–150. doi: 10.1016/0303-7207(79)90034-0. [DOI] [PubMed] [Google Scholar]
  44. Ucker D. S., Firestone G. L., Yamamoto K. R. Glucocorticoids and chromosomal position modulate murine mammary tumor virus transcription by affecting efficiency of promoter utilization. Mol Cell Biol. 1983 Apr;3(4):551–561. doi: 10.1128/mcb.3.4.551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Ucker D. S., Ross S. R., Yamamoto K. R. Mammary tumor virus DNA contains sequences required for its hormone-regulated transcription. Cell. 1981 Dec;27(2 Pt 1):257–266. doi: 10.1016/0092-8674(81)90409-8. [DOI] [PubMed] [Google Scholar]
  46. Vannice J. L., Ringold G. M., McLean J. W., Taylor J. M. Induction of the acute-phase reactant, alpha 1-acid glycoprotein, by glucocorticoids in rat hepatoma cells. DNA. 1983;2(3):205–212. doi: 10.1089/dna.1983.2.205. [DOI] [PubMed] [Google Scholar]
  47. Vannice J. L., Taylor J. M., Ringold G. M. Glucocorticoid-mediated induction of alpha 1-acid glycoprotein: evidence for hormone-regulated RNA processing. Proc Natl Acad Sci U S A. 1984 Jul;81(14):4241–4245. doi: 10.1073/pnas.81.14.4241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Yamamoto K. R., Alberts B. M. Steroid receptors: elements for modulation of eukaryotic transcription. Annu Rev Biochem. 1976;45:721–746. doi: 10.1146/annurev.bi.45.070176.003445. [DOI] [PubMed] [Google Scholar]
  49. Yamamoto K. R., Chandler V. L., Ross S. R., Ucker D. S., Ring J. C., Feinstein S. C. Integration and activity of mammary tumor virus genes: regulation by hormone receptors and chromosomal position. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):687–697. doi: 10.1101/sqb.1981.045.01.086. [DOI] [PubMed] [Google Scholar]
  50. Yamamoto K. R., Gehring U., Stampfer M. R., Sibley C. H. Genetic approaches to steroid hormone action. Recent Prog Horm Res. 1976;32:3–32. doi: 10.1016/b978-0-12-571132-6.50008-7. [DOI] [PubMed] [Google Scholar]
  51. Yoshinaka Y., Katoh I., Copeland T. D., Oroszlan S. Murine leukemia virus protease is encoded by the gag-pol gene and is synthesized through suppression of an amber termination codon. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1618–1622. doi: 10.1073/pnas.82.6.1618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Yoshinaka Y., Luftig R. B. A comparison of avian and murine retrovirus polyprotein cleavage activities. Virology. 1981 May;111(1):239–250. doi: 10.1016/0042-6822(81)90668-1. [DOI] [PubMed] [Google Scholar]
  53. Yoshinaka Y., Luftig R. B. Properties of a P70 proteolytic factor of murine leukemia viruses. Cell. 1977 Nov;12(3):709–719. doi: 10.1016/0092-8674(77)90271-9. [DOI] [PubMed] [Google Scholar]
  54. von der Ahe D., Janich S., Scheidereit C., Renkawitz R., Schütz G., Beato M. Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature. 1985 Feb 21;313(6004):706–709. doi: 10.1038/313706a0. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES