Abstract
It has been shown previously that the synthesis of small nuclear RNAs (snRNAs) U1, U2, U3, U4, and U5, in contrast to that of all other RNA species tested, decreases markedly within 2 h of cell incubation after exposure to UV light (254 nm), while pyrimidine dimers are being removed from DNA. We examined the possibility that the postirradiation cell incubation-dependent, UV light-induced inhibition of snRNA synthesis might reflect hypersensitivity of the snRNA transcriptional domains to single-stranded DNA nicks or relaxation of DNA torsional stress or both that occur during DNA repair. This late suppression of snRNA biosynthesis was as pronounced in UV light-irradiated (DNA incision-deficient) xeroderma pigmentosum fibroblasts (complementation group A) as in irradiated normal human fibroblasts. The synthesis of snRNAs was not preferentially sensitive to gamma radiation (which produces single-stranded DNA breaks) or novobiocin or nalidixic acid (which induce DNA relaxation). Neither of these two drugs prevented the UV light-induced inhibition of snRNA synthesis observed during postirradiation cell incubation. These results suggest that the late suppression of snRNA synthesis does not result from hypersensitivity of snRNA transcriptional domains to single-stranded DNA cleavages or relaxation of DNA torsional strain. The UV light-induced late inhibition of snRNA synthesis: shows an inactivation curve whose slope differs from that observed immediately after irradiation; is seen in untransformed cells as well as established cells lines; and has been conserved between birds and mammals.
Full text
PDF





Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Busch H., Reddy R., Rothblum L., Choi Y. C. SnRNAs, SnRNPs, and RNA processing. Annu Rev Biochem. 1982;51:617–654. doi: 10.1146/annurev.bi.51.070182.003153. [DOI] [PubMed] [Google Scholar]
- Cook P. R., Brazell I. A. Detection and repair of single-strand breaks in nuclear DNA. Nature. 1976 Oct 21;263(5579):679–682. doi: 10.1038/263679a0. [DOI] [PubMed] [Google Scholar]
- Eliceiri G. L. Formation of low molecular weight RNA species in HeLa cells. J Cell Physiol. 1980 Feb;102(2):199–207. doi: 10.1002/jcp.1041020211. [DOI] [PubMed] [Google Scholar]
- Eliceiri G. L. Sensitivity of low molecular weight RNA synthesis to UV radiation. Nature. 1979 May 3;279(5708):80–81. doi: 10.1038/279080a0. [DOI] [PubMed] [Google Scholar]
- Eliceiri G. L., Smith J. H. Sensitivity to UV radiation of small nuclear RNA synthesis in mammalian cells. Mol Cell Biol. 1983 Dec;3(12):2151–2155. doi: 10.1128/mcb.3.12.2151. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ernst S. G., Rustad R. C., Oleinick N. L. Radiation-induced inhibition of RNA synthesis in Tetrahymena pyriformis. Int J Radiat Biol Relat Stud Phys Chem Med. 1975 Jul;28(1):67–74. doi: 10.1080/09553007514550771. [DOI] [PubMed] [Google Scholar]
- Fujita H., Miyakoshi M. Effect of gamma-irradiation on the synthesis of ribosomal RNA and ribosomal subparticles in Escherichia coli. Radiat Res. 1973 Oct;56(1):186–200. [PubMed] [Google Scholar]
- Gellert M., O'Dea M. H., Itoh T., Tomizawa J. Novobiocin and coumermycin inhibit DNA supercoiling catalyzed by DNA gyrase. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4474–4478. doi: 10.1073/pnas.73.12.4474. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldberg S., Schwartz H., Darnell J. E., Jr Evidence from UV transcription mapping in HeLa cells that heterogeneous nuclear RNA is the messenger RNA precursor. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4520–4523. doi: 10.1073/pnas.74.10.4520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gurdon J. B., Melton D. A. Gene transfer in amphibian eggs and oocytes. Annu Rev Genet. 1981;15:189–218. doi: 10.1146/annurev.ge.15.120181.001201. [DOI] [PubMed] [Google Scholar]
- Hanawalt P. C., Cooper P. K., Ganesan A. K., Smith C. A. DNA repair in bacteria and mammalian cells. Annu Rev Biochem. 1979;48:783–836. doi: 10.1146/annurev.bi.48.070179.004031. [DOI] [PubMed] [Google Scholar]
- Hsieh T., Brutlag D. ATP-dependent DNA topoisonmerase from D. melanogaster reversibly catenates duplex DNA rings. Cell. 1980 Aug;21(1):115–125. doi: 10.1016/0092-8674(80)90119-1. [DOI] [PubMed] [Google Scholar]
- Htun H., Lund E., Dahlberg J. E. Human U1 RNA genes contain an unusually sensitive nuclease S1 cleavage site within the conserved 3' flanking region. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7288–7292. doi: 10.1073/pnas.81.23.7288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keller W. The RNA lariat: a new ring to the splicing of mRNA precursors. Cell. 1984 Dec;39(3 Pt 2):423–425. doi: 10.1016/0092-8674(84)90449-5. [DOI] [PubMed] [Google Scholar]
- Leadon S. A., Hanawalt P. C. Monoclonal antibody to DNA containing thymine glycol. Mutat Res. 1983 Aug;112(4):191–200. doi: 10.1016/0167-8817(83)90006-8. [DOI] [PubMed] [Google Scholar]
- Lucas C. J. Immunological demonstration of the disappearance of pyrimidine dimers from nuclei of cultured human cells. Exp Cell Res. 1972 Oct;74(2):480–486. doi: 10.1016/0014-4827(72)90404-1. [DOI] [PubMed] [Google Scholar]
- Lund E., Dahlberg J. E. True genes for human U1 small nuclear RNA. Copy number, polymorphism, and methylation. J Biol Chem. 1984 Feb 10;259(3):2013–2021. [PubMed] [Google Scholar]
- Manser T., Gesteland R. F. Human U1 loci: genes for human U1 RNA have dramatically similar genomic environments. Cell. 1982 May;29(1):257–264. doi: 10.1016/0092-8674(82)90110-6. [DOI] [PubMed] [Google Scholar]
- Mattern M. R., Paone R. F., Day R. S., 3rd Eukaryotic DNA repair is blocked at different steps by inhibitors of DNA topoisomerases and of DNA polymerases alpha and beta. Biochim Biophys Acta. 1982 Apr 26;697(1):6–13. doi: 10.1016/0167-4781(82)90038-0. [DOI] [PubMed] [Google Scholar]
- Roop D. R., Kristo P., Stumph W. E., Tsai M. J., O'Malley B. W. Structure and expression of a chicken gene coding for U1 RNA. Cell. 1981 Mar;23(3):671–680. doi: 10.1016/0092-8674(81)90430-x. [DOI] [PubMed] [Google Scholar]
- Sauerbier W., Hercules K. Gene and transcription unit mapping by radiation effects. Annu Rev Genet. 1978;12:329–363. doi: 10.1146/annurev.ge.12.120178.001553. [DOI] [PubMed] [Google Scholar]
- Sugino A., Peebles C. L., Kreuzer K. N., Cozzarelli N. R. Mechanism of action of nalidixic acid: purification of Escherichia coli nalA gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4767–4771. doi: 10.1073/pnas.74.11.4767. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsushimoto G., Kikuchi T., Ishida M. R. Recovery from inhibition of transcription in gamma-irradiated Euglena cells. Biochim Biophys Acta. 1982 Apr 26;697(1):14–19. doi: 10.1016/0167-4781(82)90039-2. [DOI] [PubMed] [Google Scholar]



