Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1986 Apr;6(4):1268–1275. doi: 10.1128/mcb.6.4.1268

Decreased tumorigenicity correlates with expression of altered cell surface carbohydrates in Lec9 CHO cells.

J Ripka, S Shin, P Stanley
PMCID: PMC367639  PMID: 3785164

Abstract

To investigate a role for surface carbohydrates in cellular malignancy, 15 different glycosylation-defective CHO cell mutants were examined for their tumorigenic and metastatic capacities after subcutaneous injection into nude mice. Most of the glycosylation mutants displayed similar or slightly decreased tumorigenicity compared with parental CHO cells. Neither parental CHO cells nor any of the mutants were observed to metastasize. However, independent isolates of one mutant type, Lec9, showed a dramatic reduction in tumor formation. The altered carbohydrates expressed at the surface of Lec9 cells appeared to be responsible for their loss of tumorigenicity, because revertants for lectin resistance were able to form tumors, and a double mutant (Lec9.Lec1) that expressed a Lec1 glycosylation phenotype also formed tumors. Finally, Lec9 cells were able to form tumors in gamma-irradiated nude mice, suggesting that recognition by an irradiation-sensitive host cell(s) was responsible for their reduced tumorigenicity in untreated nude mice.

Full text

PDF
1268

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blithe D. L., Buck C. A., Warren L. Comparison of glycopeptides from control and virus-transformed baby hamster kidney fibroblasts. Biochemistry. 1980 Jul 8;19(14):3386–3395. doi: 10.1021/bi00555a045. [DOI] [PubMed] [Google Scholar]
  2. Boon T., Kellermann O. Rejection by syngeneic mice of cell variants obtained by mutagenesis of a malignant teratocarcinoma cell line. Proc Natl Acad Sci U S A. 1977 Jan;74(1):272–275. doi: 10.1073/pnas.74.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bramwell M. E., Harris H. An abnormal membrane glycoprotein associated with malignancy in a wide range of different tumours. Proc R Soc Lond B Biol Sci. 1978 Apr 13;201(1142):87–106. doi: 10.1098/rspb.1978.0034. [DOI] [PubMed] [Google Scholar]
  4. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  5. Cummings R. D., Kornfeld S. Fractionation of asparagine-linked oligosaccharides by serial lectin-Agarose affinity chromatography. A rapid, sensitive, and specific technique. J Biol Chem. 1982 Oct 10;257(19):11235–11240. [PubMed] [Google Scholar]
  6. Dennis J. W., Carver J. P., Schachter H. Asparagine-linked oligosaccharides in murine tumor cells: comparison of a WGA-resistant (WGAr) nonmetastatic mutant and a related WGA-sensitive (WGAs) metastatic line. J Cell Biol. 1984 Sep;99(3):1034–1044. doi: 10.1083/jcb.99.3.1034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Deutscher S. L., Nuwayhid N., Stanley P., Briles E. I., Hirschberg C. B. Translocation across Golgi vesicle membranes: a CHO glycosylation mutant deficient in CMP-sialic acid transport. Cell. 1984 Dec;39(2 Pt 1):295–299. doi: 10.1016/0092-8674(84)90007-2. [DOI] [PubMed] [Google Scholar]
  8. Finne J., Burger M. M., Prieels J. P. Enzymatic basis for a lectin-resistant phenotype: increase in a fucosyltransferase in mouse melanoma cells. J Cell Biol. 1982 Feb;92(2):277–282. doi: 10.1083/jcb.92.2.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Finne J., Tao T. W., Burger M. M. Carbohydrate changes in glycoproteins of a poorly metastasizing wheat germ agglutinin-resistant melanoma clone. Cancer Res. 1980 Jul;40(7):2580–2587. [PubMed] [Google Scholar]
  10. Frost P., Kerbel R. S., Bauer E., Tartamella-Biondo R., Cefalu W. Mutagen treatment as a means for selecting immunogenic variants from otherwise poorly immunogenic malignant murine tumors. Cancer Res. 1983 Jan;43(1):125–132. [PubMed] [Google Scholar]
  11. Hammarström S., Hammarström M. L., Sundblad G., Arnarp J., Lönngren J. Mitogenic leukoagglutinin from Phaseolus vulgaris binds to a pentasaccharide unit in N-acetyllactosamine-type glycoprotein glycans. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1611–1615. doi: 10.1073/pnas.79.5.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kahn P., Nakamura K., Shin S., Smith R. E., Weber M. J. Tumorigenicity of partial transformation mutants of Rous sarcoma virus. J Virol. 1982 May;42(2):602–611. doi: 10.1128/jvi.42.2.602-611.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kahn P., Simon R. S., Klein A. S., Shin S. Tumor formation by transformed cells in nude mice. Cold Spring Harb Symp Quant Biol. 1980;44(Pt 1):695–702. doi: 10.1101/sqb.1980.044.01.074. [DOI] [PubMed] [Google Scholar]
  14. Kerbel R. S. Immunologic studies of membrane mutants of a highly metastatic murine tumor. Am J Pathol. 1979 Dec;97(3):609–622. [PMC free article] [PubMed] [Google Scholar]
  15. Kerbel R. S., Man M. S. Single-step selection of unique human melanoma variants displaying unusually aggressive metastatic behavior in nude athymic mice. Invasion Metastasis. 1984;4 (Suppl 1):31–43. [PubMed] [Google Scholar]
  16. Kim U., Baumler A., Carruthers C., Bielat K. Immunological escape mechanism in spontaneously metastasizing mammary tumors. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1012–1016. doi: 10.1073/pnas.72.3.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim U. Metastasizing mammary carcinomas in rats: induction and study of their immunogenicity. Science. 1970 Jan 2;167(3914):72–74. doi: 10.1126/science.167.3914.72. [DOI] [PubMed] [Google Scholar]
  18. Lagarde A. E., Donaghue T. P., Kerbel R., Siminovitch L. Metastatic properties of distinct phenotypic classes of lectin-resistant mutants isolated from murine MDAY-D2 cell line. Somat Cell Mol Genet. 1984 Sep;10(5):503–519. doi: 10.1007/BF01534855. [DOI] [PubMed] [Google Scholar]
  19. Lin L. H., Stern J. L., Davidson E. A. Clones from cultured, B16 mouse-melanoma cells resistant to wheat-germ agglutinin and with altered production of mucin-type glycoproteins. Carbohydr Res. 1983 Jan 1;111(2):257–271. doi: 10.1016/0008-6215(83)88310-4. [DOI] [PubMed] [Google Scholar]
  20. McBurney M. W., Whitmore G. F. Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells. Cell. 1974 Jul;2(3):173–182. doi: 10.1016/0092-8674(74)90091-9. [DOI] [PubMed] [Google Scholar]
  21. Minato N., Bloom B. R., Jones C., Holland J., Reid L. M. Mechanism of rejection of virus persistently infected tumor cells by athymic nude mice. J Exp Med. 1979 May 1;149(5):1117–1133. doi: 10.1084/jem.149.5.1117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Minato N., Reid L., Bloom B. R. On the heterogeneity of murine natural killer cells. J Exp Med. 1981 Sep 1;154(3):750–762. doi: 10.1084/jem.154.3.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nowell P. C. The clonal evolution of tumor cell populations. Science. 1976 Oct 1;194(4260):23–28. doi: 10.1126/science.959840. [DOI] [PubMed] [Google Scholar]
  24. Ogata S. I., Muramatsu T., Kobata A. New structural characteristic of the large glycopeptides from transformed cells. Nature. 1976 Feb 19;259(5544):580–582. doi: 10.1038/259580a0. [DOI] [PubMed] [Google Scholar]
  25. PUCK T. T., CIECIURA S. J., ROBINSON A. Genetics of somatic mammalian cells. III. Long-term cultivation of euploid cells from human and animal subjects. J Exp Med. 1958 Dec 1;108(6):945–956. doi: 10.1084/jem.108.6.945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Poste G., Nicolson G. L. Arrest and metastasis of blood-borne tumor cells are modified by fusion of plasma membrane vesicles from highly metastatic cells. Proc Natl Acad Sci U S A. 1980 Jan;77(1):399–403. doi: 10.1073/pnas.77.1.399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Reading C. L., Belloni P. N., Nicolson G. L. Selection and in vivo properties of lectin-attachment variants of malignant murine lymphosarcoma cell lines. J Natl Cancer Inst. 1980 May;64(5):1241–1249. [PubMed] [Google Scholar]
  28. Ripka J., Stanley P. Lectin-resistant CHO cells: selection of four new pea lectin-resistant phenotypes. Somat Cell Mol Genet. 1986 Jan;12(1):51–62. doi: 10.1007/BF01560727. [DOI] [PubMed] [Google Scholar]
  29. Robertson M. A., Etchison J. R., Robertson J. S., Summers D. F., Stanley P. Specific changes in the oligosaccharide moieties of VSV grown in different lectin-resistnat CHO cells. Cell. 1978 Mar;13(3):515–526. doi: 10.1016/0092-8674(78)90325-2. [DOI] [PubMed] [Google Scholar]
  30. Schattner A., Rager-Zisman B., Bloom B. R. Persistent viral infection affects tumorigenicity of a neuroblastoma cell line. Cell Immunol. 1985 Jan;90(1):103–114. doi: 10.1016/0008-8749(85)90173-x. [DOI] [PubMed] [Google Scholar]
  31. Shin S. Use of nude mice for tumorigenicity testing and mass propagation. Methods Enzymol. 1979;58:370–379. doi: 10.1016/s0076-6879(79)58152-x. [DOI] [PubMed] [Google Scholar]
  32. Skehel J. J., Stevens D. J., Daniels R. S., Douglas A. R., Knossow M., Wilson I. A., Wiley D. C. A carbohydrate side chain on hemagglutinins of Hong Kong influenza viruses inhibits recognition by a monoclonal antibody. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1779–1783. doi: 10.1073/pnas.81.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Smith B. L., Sager R. Multistep origin of tumor-forming ability in Chinese hamster embryo fibroblast cells. Cancer Res. 1982 Feb;42(2):389–396. [PubMed] [Google Scholar]
  34. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  35. Stanley P., Caillibot V., Siminovitch L. Stable alterations at the cell membrane of Chinese hamster ovary cells resistant to the cytotoxicity of phytohemagglutinin. Somatic Cell Genet. 1975 Jan;1(1):3–26. doi: 10.1007/BF01538729. [DOI] [PubMed] [Google Scholar]
  36. Stanley P. Carbohydrate heterogeneity of vesicular stomatitis virus G glycoprotein allows localization of the defect in a glycosylation mutant of CHO cells. Arch Biochem Biophys. 1982 Nov;219(1):128–139. doi: 10.1016/0003-9861(82)90141-2. [DOI] [PubMed] [Google Scholar]
  37. Stanley P., Chaney W. Control of carbohydrate processing: the lec1A CHO mutation results in partial loss of N-acetylglucosaminyltransferase I activity. Mol Cell Biol. 1985 Jun;5(6):1204–1211. doi: 10.1128/mcb.5.6.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Stanley P. Glycosylation mutants of animal cells. Annu Rev Genet. 1984;18:525–552. doi: 10.1146/annurev.ge.18.120184.002521. [DOI] [PubMed] [Google Scholar]
  39. Stanley P. Lectin-resistant CHO cells: selection of new mutant phenotypes. Somatic Cell Genet. 1983 Sep;9(5):593–608. doi: 10.1007/BF01574260. [DOI] [PubMed] [Google Scholar]
  40. Stanley P., Narasimhan S., Siminovitch L., Schachter H. Chinese hamster ovary cells selected for resistance to the cytotoxicity of phytohemagglutinin are deficient in a UDP-N-acetylglucosamine--glycoprotein N-acetylglucosaminyltransferase activity. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3323–3327. doi: 10.1073/pnas.72.9.3323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Stanley P. Selection of lectin-resistant mutants of animal cells. Methods Enzymol. 1983;96:157–184. doi: 10.1016/s0076-6879(83)96015-9. [DOI] [PubMed] [Google Scholar]
  42. Stanley P. Selection of specific wheat germ agglutinin-resistant (WgaR) phenotypes from Chinese hamster ovary cell populations containing numerous lecR genotypes. Mol Cell Biol. 1981 Aug;1(8):687–696. doi: 10.1128/mcb.1.8.687. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Stanley P., Vivona G., Atkinson P. H. 1H NMR spectroscopy of carbohydrates from the G glycoprotein of vesicular stomatitis virus grown in parental and Lec4 Chinese hamster ovary cells. Arch Biochem Biophys. 1984 Apr;230(1):363–374. doi: 10.1016/0003-9861(84)90119-x. [DOI] [PubMed] [Google Scholar]
  44. Stanley W. S., Chu E. H. BS I-B4 isolectin as a probe for an investigation of membrane alterations and transformation phenotypes of mouse L cells. J Cell Sci. 1981 Aug;50:79–88. doi: 10.1242/jcs.50.1.79. [DOI] [PubMed] [Google Scholar]
  45. Tao T. W., Burger M. M. Lectin-resistant variants of mouse melanoma cells. I. Altered metastasizing capacity and tumorigenicity. Int J Cancer. 1982 Apr 15;29(4):425–430. doi: 10.1002/ijc.2910290411. [DOI] [PubMed] [Google Scholar]
  46. Tao T. W., Burger M. M. Non-metastasising variants selected from metastasising melanoma cells. Nature. 1977 Dec 1;270(5636):437–438. doi: 10.1038/270437a0. [DOI] [PubMed] [Google Scholar]
  47. Warren L., Buck C. A., Tuszynski G. P. Glycopeptide changes and malignant transformation. A possible role for carbohydrate in malignant behavior. Biochim Biophys Acta. 1978 Sep 18;516(1):97–127. doi: 10.1016/0304-419x(78)90005-7. [DOI] [PubMed] [Google Scholar]
  48. Yamashita K., Tachibana Y., Ohkura T., Kobata A. Enzymatic basis for the structural changes of asparagine-linked sugar chains of membrane glycoproteins of baby hamster kidney cells induced by polyoma transformation. J Biol Chem. 1985 Apr 10;260(7):3963–3969. [PubMed] [Google Scholar]
  49. Yogeeswaran G., Salk P. L. Metastatic potential is positively correlated with cell surface sialylation of cultured murine tumor cell lines. Science. 1981 Jun 26;212(4502):1514–1516. doi: 10.1126/science.7233237. [DOI] [PubMed] [Google Scholar]
  50. Yogeeswaran G., Tao T. Cell surface sialic acid expression of lectin-resistant variant clones of B16 melanoma with altered metastasizing potential. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1452–1460. doi: 10.1016/s0006-291x(80)80060-x. [DOI] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES