Abstract
From a mutagenized population of wild-type mouse (S49) T-lymphoma cells, a clone, 80-5D2, was isolated in a single step by virtue of its ability to survive in 80 nM 5-fluorouridine. Unlike previously isolated nucleoside transport-deficient cell lines (A. Cohen, B. Ullman, and D. W. Martin, Jr., J. Biol. Chem. 254:112-116, 1979), 80-5D2 cells were only slightly less sensitive to growth inhibition by a variety of cytotoxic nucleosides and were capable of proliferating in hypoxanthine-amethopterin-thymidine-containing medium. The molecular basis for the phenotype of 80-5D2 cells was incomplete deficiency in the ability of the mutant cells to translocate nucleosides across the plasma membrane. Interestingly, mutant cells were more capable than wild-type cells of transporting the nucleobase hypoxanthine. Residual transport of adenosine into 80-5D2 cells was just as sensitive to inhibition by nucleosides and more sensitive to inhibition by hypoxanthine than that in wild-type cells, indicating that the phenomena of ligand binding and translocation can be uncoupled genetically. The 80-5D2 cells lacked cell surface binding sites for the potent inhibitor of nucleoside transport p-nitrobenzylthioinosine (NBMPR) and, consequently, were largely resistant to the physiological effects of NBMPR. However, the altered transporter retained its sensitivity to dipyridamole, another inhibitor of nucleoside transport. The biochemical phenotype of the 80-5D2 cell line supports the hypothesis that the determinants that comprise the nucleoside carrier site, the hypoxanthine carrier site, the NBMPR binding site, and the dipyridamole binding site of the nucleoside transport function of mouse S49 cells are genetically distinguishable.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aronow B., Allen K., Patrick J., Ullman B. Altered nucleoside transporters in mammalian cells selected for resistance to the physiological effects of inhibitors of nucleoside transport. J Biol Chem. 1985 May 25;260(10):6226–6233. [PubMed] [Google Scholar]
- Aronow B., Ullman B. Role of the nucleoside transport function in the transport and salvage of purine nucleobases. J Biol Chem. 1986 Feb 15;261(5):2014–2019. [PubMed] [Google Scholar]
- Aronow B., Ullman B. Thymidine incorporation in nucleoside transport-deficient lymphoma cells. J Biol Chem. 1985 Dec 25;260(30):16274–16278. [PubMed] [Google Scholar]
- Aronow B., Watts T., Lassetter J., Washtien W., Ullman B. Biochemical phenotype of 5-fluorouracil-resistant murine T-lymphoblasts with genetically altered CTP synthetase activity. J Biol Chem. 1984 Jul 25;259(14):9035–9043. [PubMed] [Google Scholar]
- Belt J. A. Heterogeneity of nucleoside transport in mammalian cells. Two types of transport activity in L1210 and other cultured neoplastic cells. Mol Pharmacol. 1983 Nov;24(3):479–484. [PubMed] [Google Scholar]
- Berlin R. D., Oliver J. M. Membrane transport of purine and pyrimidine bases and nucleosides in animal cells. Int Rev Cytol. 1975;42:287–336. doi: 10.1016/s0074-7696(08)60983-3. [DOI] [PubMed] [Google Scholar]
- Cass C. E., Kolassa N., Uehara Y., Dahlig-Harley E., Harley E. R., Paterson A. R. Absence of binding sites for the transport inhibitor nitrobenzylthioinosine on nucleoside transport-deficient mouse lymphoma cells. Biochim Biophys Acta. 1981 Dec 21;649(3):769–777. doi: 10.1016/0005-2736(81)90182-6. [DOI] [PubMed] [Google Scholar]
- Cass C. E., Paterson A. R. Mediated transport of nucleosides in human erythrocytes. Accelerative exchange diffusion of uridine and thymidine and specificity toward pyrimidine nucleosides as permeants. J Biol Chem. 1972 May 25;247(10):3314–3320. [PubMed] [Google Scholar]
- Cass C. E., Paterson A. R. Nitrobenzylthionionosine binding sites in the erythrocyte membrane. Biochim Biophys Acta. 1976 Jan 21;419(2):285–294. doi: 10.1016/0005-2736(76)90354-0. [DOI] [PubMed] [Google Scholar]
- Coffino P., Baumal R., Laskov R., Scharff M. D. Cloning of mouse myeloma cells and detection of rare variants. J Cell Physiol. 1972 Jun;79(3):429–440. doi: 10.1002/jcp.1040790313. [DOI] [PubMed] [Google Scholar]
- Cohen A., Leung C., Thompson E. Characterization of mouse lymphoma cells with altered nucleoside transport. J Cell Physiol. 1985 Jun;123(3):431–434. doi: 10.1002/jcp.1041230320. [DOI] [PubMed] [Google Scholar]
- Cohen A., Martin D. W., Jr Inosine uptake by cultured fibroblasts from normal and purine nucleoside phosphorylase-deficient humans. J Biol Chem. 1977 Jun 25;252(12):4428–4430. [PubMed] [Google Scholar]
- Cohen A., Ullman B., Martin D. W., Jr Characterization of a mutant mouse lymphoma cell with deficient transport of purine and pyrimidine nucleosides. J Biol Chem. 1979 Jan 10;254(1):112–116. [PubMed] [Google Scholar]
- Dowd D. J., Quinlan D. C., Hochstadt J. Mechanism of purine nucleoside handling and transport in isolated membrane vesicles from polyoma transformed BHK/21 cells. Biochemistry. 1977 Oct 4;16(20):4526–4532. doi: 10.1021/bi00639a030. [DOI] [PubMed] [Google Scholar]
- HENDERSON J. F. Feedback inhibition of purine biosynthesis in ascites tumor cells. J Biol Chem. 1962 Aug;237:2631–2635. [PubMed] [Google Scholar]
- Horibata K., Harris A. W. Mouse myelomas and lymphomas in culture. Exp Cell Res. 1970 Apr;60(1):61–77. doi: 10.1016/0014-4827(70)90489-1. [DOI] [PubMed] [Google Scholar]
- Jarvis S. M., McBride D., Young J. D. Erythrocyte nucleoside transport: asymmetrical binding of nitrobenzylthioinosine to nucleoside permeation sites. J Physiol. 1982 Mar;324:31–46. doi: 10.1113/jphysiol.1982.sp014099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jarvis S. M., Young J. D. Nucleoside translocation in sheep reticulocytes and fetal erythrocytes: a proposed model for the nucleoside transporter. J Physiol. 1982 Mar;324:47–66. doi: 10.1113/jphysiol.1982.sp014100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Le Hir M., Dubach U. C. Sodium gradient-energized concentrative transport of adenosine in renal brush border vesicles. Pflugers Arch. 1984 May;401(1):58–63. doi: 10.1007/BF00581533. [DOI] [PubMed] [Google Scholar]
- Oliver J. M., Paterson A. R. Nucleoside transport. I. A mediated process in human erythrocytes. Can J Biochem. 1971 Feb;49(2):262–270. doi: 10.1139/o71-038. [DOI] [PubMed] [Google Scholar]
- Paterson A. R., Oliver J. M. Nucleoside transport. II. Inhibition by p-nitrobenzylthioguanosine and related compounds. Can J Biochem. 1971 Feb;49(2):271–274. doi: 10.1139/o71-039. [DOI] [PubMed] [Google Scholar]
- Pickard M. A., Brown R. R., Paul B., Paterson A. R. Binding of the nucleoside transport inhibitor 4-nitrobenzylthioinosine to erythrocyte membranes. Can J Biochem. 1973 May;51(5):666–672. doi: 10.1139/o73-083. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G., Wohlhueter R. M. Hypoxanthine transport in mammalian cells: cell type-specific differences in sensitivity to inhibition by dipyridamole and uridine. J Membr Biol. 1984;81(3):255–262. doi: 10.1007/BF01868718. [DOI] [PubMed] [Google Scholar]
- Plagemann P. G., Wohlhueter R. M. Nucleoside transport in cultured mammalian cells. Multiple forms with different sensitivity to inhibition by nitrobenzylthioinosine or hypoxanthine. Biochim Biophys Acta. 1984 Jun 13;773(1):39–52. doi: 10.1016/0005-2736(84)90548-0. [DOI] [PubMed] [Google Scholar]
- Prasad R., Shopsis C., Hochstadt J. Distinct mechanisms of hypoxanthine and inosine transport in membrane vesicles isolated from Chinese hamster ovary and Balb 3T3 cells. Biochim Biophys Acta. 1981 May 6;643(2):306–318. doi: 10.1016/0005-2736(81)90076-6. [DOI] [PubMed] [Google Scholar]
- Schaeffer H. J., Schwender C. F. Enzyme inhibitors. 26. Bridging hydrophobic and hydrophilic regions on adenosine deaminase with some 9-(2-hydroxy-3-alkyl)adenines. J Med Chem. 1974 Jan;17(1):6–8. doi: 10.1021/jm00247a002. [DOI] [PubMed] [Google Scholar]
- Scholtissek C. Studies on the uptake of nucleic acid precursors into cells in tissue culture. Biochim Biophys Acta. 1968 Jun 24;158(3):435–447. doi: 10.1016/0304-4165(68)90297-3. [DOI] [PubMed] [Google Scholar]
- Schwenk M., Hegazy E., Lopez del Pino V. Uridine uptake by isolated intestinal epithelial cells of guinea pig. Biochim Biophys Acta. 1984 Dec 11;805(4):370–374. doi: 10.1016/0167-4889(84)90020-x. [DOI] [PubMed] [Google Scholar]
- Taube R. A., Berlin R. D. Membrane transport of nucleosides in rabbit polymorphonuclear leukocytes. Biochim Biophys Acta. 1972 Jan 17;255(1):6–18. doi: 10.1016/0005-2736(72)90003-x. [DOI] [PubMed] [Google Scholar]
- Ullman B., Cohen A., Martin D. W. Characterization of a cell culture model for the study of adenosine deaminase- and purine nucleoside phosphorylase-deficient immunologic disease. Cell. 1976 Oct;9(2):205–211. doi: 10.1016/0092-8674(76)90111-2. [DOI] [PubMed] [Google Scholar]
- Ullman B., Gudas L. J., Clift S. M., Martin D. W., Jr Isolation and characterization of purine-nucleoside phosphorylase-deficient T-lymphoma cells and secondary mutants with altered ribonucleotide reductase: genetic model for immunodeficiency disease. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1074–1078. doi: 10.1073/pnas.76.3.1074. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ullman B., Kaur K., Watts T. Genetic studies on the role of the nucleoside transport function in nucleoside efflux, the inosine cycle, and purine biosynthesis. Mol Cell Biol. 1983 Jul;3(7):1187–1196. doi: 10.1128/mcb.3.7.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wohlhueter R. M., Marz R., Plagemann P. G. Properties of the thymidine transport system of Chinese hamster ovary cells as probed by nitrobenzylthioinosine. J Membr Biol. 1978 Sep 19;42(3):247–264. doi: 10.1007/BF01870361. [DOI] [PubMed] [Google Scholar]
