Abstract
Heat shock caused significant changes in intracellular pH (pHi) and intracellular free calcium concentration [( Ca2+]i) which occurred rapidly after temperature elevation. pHi fell from a resting level value at 25 degrees C of 7.38 +/- 0.02 (mean +/- standard error of the mean, n = 15) to 6.91 +/- 0.11 (n = 7) at 35 degrees C. The resting level value of [Ca2+]i in single Drosophila melanogaster larval salivary gland cells was 198 +/- 31 nM (n = 4). It increased approximately 10-fold, to 1,870 +/- 770 nM (n = 4), during a heat shock. When salivary glands were incubated in calcium-free, ethylene glycol-bis(beta-aminoethyl ether)-N,N',N'-tetraacetic acid (EGTA)-buffered medium, the resting level value of [Ca2+]i was reduced to 80 +/- 7 nM (n = 3), and heat shock resulted in a fourfold increase in [Ca2+]i to 353 +/- 90 nM (n = 3). The intracellular free-ion concentrations of Na+, K+, Cl-, and Mg2+ were 9.6 +/- 0.8, 101.9 +/- 1.7, 36 +/- 1.5, and 2.4 +/- 0.2 mM, respectively, and remained essentially unchanged during a heat shock. Procedures were devised to mimic or block the effects of heat shock on pHi and [Ca2+]i and to assess their role in the induction of heat shock proteins. We report here that the changes in [Ca2+]i and pHi which occur during heat shock are not sufficient, nor are they required, for a complete induction of the heat shock response.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ashburner M., Bonner J. J. The induction of gene activity in drosophilia by heat shock. Cell. 1979 Jun;17(2):241–254. doi: 10.1016/0092-8674(79)90150-8. [DOI] [PubMed] [Google Scholar]
- Baker P. F., Honerjäger P. Influence of carbon dioxide on level of ionised calcium in squid axons. Nature. 1978 May 11;273(5658):160–161. doi: 10.1038/273160a0. [DOI] [PubMed] [Google Scholar]
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Boonstra J., Schamhart D. H., de Laat S. W., van Wijk R. Analysis of K+ and Na+ transport and intracellular contents during and after heat shock and their role in protein synthesis in rat hepatoma cells. Cancer Res. 1984 Mar;44(3):955–960. [PubMed] [Google Scholar]
- Burdon R. H., Cutmore C. M. Human heat shock gene expression and the modulation of plasma membrane Na+, K+-ATPase activity. FEBS Lett. 1982 Apr 5;140(1):45–48. doi: 10.1016/0014-5793(82)80517-6. [DOI] [PubMed] [Google Scholar]
- Findly R. C., Gillies R. J., Shulman R. G. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena. Science. 1983 Mar 11;219(4589):1223–1225. doi: 10.1126/science.6828852. [DOI] [PubMed] [Google Scholar]
- Gerner E. W., Russell D. H. The relationship between polyamine accumulation and DNA replication in synchronized Chinese hamster ovary cells after heat shock. Cancer Res. 1977 Feb;37(2):482–489. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hammond G. L., Lai Y. K., Markert C. L. Diverse forms of stress lead to new patterns of gene expression through a common and essential metabolic pathway. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3485–3488. doi: 10.1073/pnas.79.11.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lamarche S., Chrétien P., Landry J. Inhibition of the heat shock response and synthesis of glucose-regulated proteins in Ca2+-deprived rat hepatoma cells. Biochem Biophys Res Commun. 1985 Sep 16;131(2):868–876. doi: 10.1016/0006-291x(85)91320-8. [DOI] [PubMed] [Google Scholar]
- Leenders H. J., Kemp A., Koninkx J. F., Rosing J. Changes in cellular ATP, ADP and AMP levels following treatments affecting cellular respiration and the activity of certain nuclear genes in Drosophila salivary glands. Exp Cell Res. 1974 May;86(1):25–30. doi: 10.1016/0014-4827(74)90642-9. [DOI] [PubMed] [Google Scholar]
- Lepock J. R., Cheng K. H., Al-Qysi H., Kruuv J. Thermotropic lipid and protein transitions in chinese hamster lung cell membranes: relationship to hyperthermic cell killing. Can J Biochem Cell Biol. 1983 Jun;61(6):421–427. doi: 10.1139/o83-057. [DOI] [PubMed] [Google Scholar]
- Meech R. W., Thomas R. C. The effect of calcium injection on the intracellular sodium and pH of snail neurones. J Physiol. 1977 Mar;265(3):867–879. doi: 10.1113/jphysiol.1977.sp011749. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mikkelsen R. B., Koch B. Thermosensitivity of the membrane potential of normal and simian virus 40-transformed hamster lymphocytes. Cancer Res. 1981 Jan;41(1):209–215. [PubMed] [Google Scholar]
- Petersen O. H., Maruyama Y. Calcium-activated potassium channels and their role in secretion. Nature. 1984 Feb 23;307(5953):693–696. doi: 10.1038/307693a0. [DOI] [PubMed] [Google Scholar]
- Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
- Reeves R. B. An imidazole alphastat hypothesis for vertebrate acid-base regulation: tissue carbon dioxide content and body temperature in bullfrogs. Respir Physiol. 1972 Mar;14(1):219–236. doi: 10.1016/0034-5687(72)90030-8. [DOI] [PubMed] [Google Scholar]
- Resendez E., Jr, Attenello J. W., Grafsky A., Chang C. S., Lee A. S. Calcium ionophore A23187 induces expression of glucose-regulated genes and their heterologous fusion genes. Mol Cell Biol. 1985 Jun;5(6):1212–1219. doi: 10.1128/mcb.5.6.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shen S. S., Steinhardt R. A. Direct measurement of intracellular pH during metabolic derepression of the sea urchin egg. Nature. 1978 Mar 16;272(5650):253–254. doi: 10.1038/272253a0. [DOI] [PubMed] [Google Scholar]
- Shen S. S., Steinhardt R. A. Intracellular pH controls the development of new potassium conductance after fertilization of the sea urchin egg. Exp Cell Res. 1980 Jan;125(1):55–61. doi: 10.1016/0014-4827(80)90188-3. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y., Rink T. J. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta. 1980 Jul;599(2):623–638. doi: 10.1016/0005-2736(80)90205-9. [DOI] [PubMed] [Google Scholar]
- Weitzel G., Pilatus U., Rensing L. Similar dose response of heat shock protein synthesis and intracellular pH change in yeast. Exp Cell Res. 1985 Jul;159(1):252–256. doi: 10.1016/s0014-4827(85)80054-9. [DOI] [PubMed] [Google Scholar]
- Welch W. J., Garrels J. I., Thomas G. P., Lin J. J., Feramisco J. R. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins. J Biol Chem. 1983 Jun 10;258(11):7102–7111. [PubMed] [Google Scholar]
- Whitaker M. J., Steinhardt R. A. Ionic regulation of egg activation. Q Rev Biophys. 1982 Nov;15(4):593–666. doi: 10.1017/s0033583500003760. [DOI] [PubMed] [Google Scholar]
- Wu F. S., Park Y. C., Roufa D., Martonosi A. Selective stimulation of the synthesis of an 80,000-dalton protein by calcium ionophores. J Biol Chem. 1981 Jun 10;256(11):5309–5312. [PubMed] [Google Scholar]
- Yi P. N. Cellular ion content changes during and after hyperthermia. Biochem Biophys Res Commun. 1979 Nov 14;91(1):177–182. doi: 10.1016/0006-291x(79)90600-4. [DOI] [PubMed] [Google Scholar]