Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1986 Aug;6(8):2957–2962. doi: 10.1128/mcb.6.8.2957

Expression of a novel high-affinity purine nucleobase transport function in mutant mammalian T lymphoblasts.

B Aronow, D Toll, J Patrick, P Hollingsworth, K McCartan, B Ullman
PMCID: PMC367865  PMID: 3491294

Abstract

The single nucleoside transport function of mouse S49 lymphoblasts also transports purine bases (B. Aronow and B. Ullman, J. Biol. Chem. 261:2014-2019, 1986). This transport of purine bases by S49 cells is sensitive to inhibition by dipyridamole (DPA) and 4-nitrobenzylthioinosine, two potent inhibitors of nucleoside transport. Therefore, wild-type S49 cells cannot salvage low hypoxanthine concentrations in the presence of 10 microM DPA and 11 microM azaserine; the latter is a potent inhibitor of purine biosynthesis. Among a mutagenized wild-type population, a cell line, JPA2, was isolated which could proliferate in 50 microM hypoxanthine-11 microM azaserine-10 microM DPA. The basis for the survival of JPA2 cells under these selective conditions was expression of a unique, high-affinity purine nucleobase transport function not present in wild-type cells. JPA2 cells could transport 5 microM concentrations of hypoxanthine, guanine, and adenine 15- to 30-fold more efficiently than parental cells did. Kinetic analyses revealed that the affinity of the JPA2 transporter for all three purine bases was much greater than that of the wild-type nucleobase transport system. Moreover, nucleobase transport in JPA2 cells, unlike that in parental cells, was insensitive to inhibition by DPA, 4-nitrobenzylthioinosine, sulfhydryl reagents, and nucleosides. No alterations in nucleoside transport capability, phosphoribosylpyrophosphate levels, or purine phosphoribosyltransferase enzymes were detected in JPA2 cells. Thus, JPA2 cells express a novel nucleobase transport capability which can be distinguished from the nucleoside transport function by multiple biochemical parameters.

Full text

PDF
2957

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alford B. L., Barnes E. M., Jr Hypoxanthine transport by cultured Chinese hamster lung fibroblasts. J Biol Chem. 1976 Aug 25;251(16):4823–4827. [PubMed] [Google Scholar]
  2. Aronow B., Allen K., Patrick J., Ullman B. Altered nucleoside transporters in mammalian cells selected for resistance to the physiological effects of inhibitors of nucleoside transport. J Biol Chem. 1985 May 25;260(10):6226–6233. [PubMed] [Google Scholar]
  3. Aronow B., Ullman B. Genetic analysis of the 6-thiobenzylpurine binding site of the nucleoside transporter in mouse lymphoblasts. Proc Soc Exp Biol Med. 1985 Sep;179(4):463–471. doi: 10.3181/00379727-179-42124. [DOI] [PubMed] [Google Scholar]
  4. Aronow B., Ullman B. Role of the nucleoside transport function in the transport and salvage of purine nucleobases. J Biol Chem. 1986 Feb 15;261(5):2014–2019. [PubMed] [Google Scholar]
  5. Aronow B., Ullman B. Thymidine incorporation in nucleoside transport-deficient lymphoma cells. J Biol Chem. 1985 Dec 25;260(30):16274–16278. [PubMed] [Google Scholar]
  6. Berlin R. D., Oliver J. M. Membrane transport of purine and pyrimidine bases and nucleosides in animal cells. Int Rev Cytol. 1975;42:287–336. doi: 10.1016/s0074-7696(08)60983-3. [DOI] [PubMed] [Google Scholar]
  7. Cass C. E., Kolassa N., Uehara Y., Dahlig-Harley E., Harley E. R., Paterson A. R. Absence of binding sites for the transport inhibitor nitrobenzylthioinosine on nucleoside transport-deficient mouse lymphoma cells. Biochim Biophys Acta. 1981 Dec 21;649(3):769–777. doi: 10.1016/0005-2736(81)90182-6. [DOI] [PubMed] [Google Scholar]
  8. Coffino P., Baumal R., Laskov R., Scharff M. D. Cloning of mouse myeloma cells and detection of rare variants. J Cell Physiol. 1972 Jun;79(3):429–440. doi: 10.1002/jcp.1040790313. [DOI] [PubMed] [Google Scholar]
  9. Cybulski R. L., Fry D. W., Goldman I. D. Adenosine stimulation of uphill adenine transport in L1210 leukemia cells. Evidence for a novel countertransport mechanism. J Biol Chem. 1981 May 10;256(9):4455–4459. [PubMed] [Google Scholar]
  10. Emmett K., Patrick J., Aronow B., Ullman B. Regulation of purine biosynthesis in G1 phase-arrested mammalian cells. J Cell Physiol. 1985 Nov;125(2):277–287. doi: 10.1002/jcp.1041250216. [DOI] [PubMed] [Google Scholar]
  11. Horibata K., Harris A. W. Mouse myelomas and lymphomas in culture. Exp Cell Res. 1970 Apr;60(1):61–77. doi: 10.1016/0014-4827(70)90489-1. [DOI] [PubMed] [Google Scholar]
  12. Iovannisci D. M., Goebel D., Allen K., Kaur K., Ullman B. Genetic analysis of adenine metabolism in Leishmania donovani promastigotes. Evidence for diploidy at the adenine phosphoribosyltransferase locus. J Biol Chem. 1984 Dec 10;259(23):14617–14623. [PubMed] [Google Scholar]
  13. KORNBERG A., LIEBERMAN I., SIMMS E. S. Enzymatic synthesis and properties of 5-phosphoribosylpyrophosphate. J Biol Chem. 1955 Jul;215(1):389–402. [PubMed] [Google Scholar]
  14. MELNICK I., BUCHANAN J. M. Biosynthesis of the purines. XIV. Conversion of (alpha-N-formyl) glycinamide ribotide to (alpha-N-formyl) glycinamidine ribotide; purification and requirements of the enzyme system. J Biol Chem. 1957 Mar;225(1):157–162. [PubMed] [Google Scholar]
  15. Marz R., Wohlhueter R. M., Plagemann P. G. Purine and pyrimidine transport and phosphoribosylation and their interaction in overall uptake by cultured mammalian cells. A re-evaluation. J Biol Chem. 1979 Apr 10;254(7):2329–2338. [PubMed] [Google Scholar]
  16. Paterson A. R., Oliver J. M. Nucleoside transport. II. Inhibition by p-nitrobenzylthioguanosine and related compounds. Can J Biochem. 1971 Feb;49(2):271–274. doi: 10.1139/o71-039. [DOI] [PubMed] [Google Scholar]
  17. Pickard M. A., Brown R. R., Paul B., Paterson A. R. Binding of the nucleoside transport inhibitor 4-nitrobenzylthioinosine to erythrocyte membranes. Can J Biochem. 1973 May;51(5):666–672. doi: 10.1139/o73-083. [DOI] [PubMed] [Google Scholar]
  18. Plagemann P. G., Wohlhueter R. M. Hypoxanthine transport in mammalian cells: cell type-specific differences in sensitivity to inhibition by dipyridamole and uridine. J Membr Biol. 1984;81(3):255–262. doi: 10.1007/BF01868718. [DOI] [PubMed] [Google Scholar]
  19. Plagemann P. G., Wohlhueter R. M. Nucleoside transport in cultured mammalian cells. Multiple forms with different sensitivity to inhibition by nitrobenzylthioinosine or hypoxanthine. Biochim Biophys Acta. 1984 Jun 13;773(1):39–52. doi: 10.1016/0005-2736(84)90548-0. [DOI] [PubMed] [Google Scholar]
  20. Puziss M. B., Wohlhueter R. M., Plagemann P. G. Adenine transport and binding in cultured mammalian cells deficient in adenine phosphoribosyltransferase. Mol Cell Biol. 1983 Jan;3(1):82–90. doi: 10.1128/mcb.3.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Scholtissek C. Studies on the uptake of nucleic acid precursors into cells in tissue culture. Biochim Biophys Acta. 1968 Jun 24;158(3):435–447. doi: 10.1016/0304-4165(68)90297-3. [DOI] [PubMed] [Google Scholar]
  22. Slaughter R. S., Barnes E. M., Jr Hypoxanthine transport by Chinese hamster lung fibroblasts: Kinetics and inhibition of nucleosides. Arch Biochem Biophys. 1979 Oct 1;197(1):349–355. doi: 10.1016/0003-9861(79)90255-8. [DOI] [PubMed] [Google Scholar]
  23. Slaughter R. S., Fenwick R. G., Jr, Barnes E. M., Jr Hypoxanthine and thymidine compete for transport in Chinese hamster fibroblasts. Arch Biochem Biophys. 1981 Oct 1;211(1):494–499. doi: 10.1016/0003-9861(81)90482-3. [DOI] [PubMed] [Google Scholar]
  24. Suresh M. R., Henderson G. B., Huennekens F. M. Folate uptake in L1210 cells: mediation by an adenine transport system. Biochem Biophys Res Commun. 1979 Mar 15;87(1):135–139. doi: 10.1016/0006-291x(79)91657-7. [DOI] [PubMed] [Google Scholar]
  25. Ullman B., Cohen A., Martin D. W. Characterization of a cell culture model for the study of adenosine deaminase- and purine nucleoside phosphorylase-deficient immunologic disease. Cell. 1976 Oct;9(2):205–211. doi: 10.1016/0092-8674(76)90111-2. [DOI] [PubMed] [Google Scholar]
  26. Ullman B., Gudas L. J., Cohen A., Martin D. W., Jr Deoxyadenosine metabolism and cytotoxicity in cultured mouse T lymphoma cells: a model for immunodeficiency disease. Cell. 1978 Jun;14(2):365–375. doi: 10.1016/0092-8674(78)90122-8. [DOI] [PubMed] [Google Scholar]
  27. Ullman B., Kaur K., Watts T. Genetic studies on the role of the nucleoside transport function in nucleoside efflux, the inosine cycle, and purine biosynthesis. Mol Cell Biol. 1983 Jul;3(7):1187–1196. doi: 10.1128/mcb.3.7.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Witney F. R., Taylor M. W. Role of adenine phosphoribosyltransferase in adenine uptake in wild-type and APRT- mutants of CHO. Biochem Genet. 1978 Oct;16(9-10):917–926. doi: 10.1007/BF00483743. [DOI] [PubMed] [Google Scholar]
  29. Zylka J. M., Plagemann P. G. Purine and pyrimidine transport by cultured Novikoff cells. Specificities and mechanism of transport and relationship to phosphoribosylation. J Biol Chem. 1975 Aug 10;250(15):5756–5767. [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES